Solutions

Solutions Review

Recall:

Solution:

Homogeneous mixture of solute and solvent.

Solute:
Substance that gets dissolved in a solution
Solvent:
Substance that dissolves the solute.

Concentration:

The amount of solute dissolved in a certain amount of solvent.

Units for Concentration

Percent Volume/Volume (\% v/v)

- States the volume of solute that 100 mL of solution would contain.
- Useful when the solute is a liquid
ex) Vinegar is a $5 \% \mathrm{v} / \mathrm{v}$ acetic acid solution
\rightarrow Contains 5 mI of $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ in 100 mL of total solution

Units for Concentration

Percent Mass/Volume (\%w/v)

- States the mass of solute that 100 mL of solution would contain.
- Useful when the solute is a solid
ex) $5 \% \mathrm{w} / \mathrm{v} \mathrm{NaCl}$ solution
\rightarrow Contains 5 g of NaCl in 100 mI of total solution

Units for Concentration

Molality (mol/Kg)

- States the number of moles of solute that 1 Kg of solvent would contain.
ex) $0.5 \mathrm{~mol} / \mathrm{Kg} \mathrm{NaCl}$ solution
\rightarrow Contains 0.5 mol of NaCl in 1 Kg of solvent
- Sometimes is used instead of molarity because volume is temperature dependant, but mass is not.
- Notice that it is moles per Kg of solvent, NOT total solution (like in molarity)

When we prepare solutions, we will most often be using Molarity (mol/L) for our units.

Units for Concentration

Molarity (mol/T)

- States the number of moles of solute that lL of solution would contain.
- Most common unit for concentration in Chemistry
ex) $0.5 \mathrm{~mol} / \mathrm{L} \mathrm{NaCl}$ solution
\rightarrow Contains 0.5 mol of NaCl in 14 of total solution

Preparing Solutions

Steps:

1. Determine the volume and concentration needed: ex) 250 mL of a $0.15 \mathrm{~mol} / \mathrm{L} \mathrm{NaNO}_{3}$ solution.
2. Determine the mass of solute that you need:
3. Weigh the amount of solid as accurately as possible, and add to a volumetric flask.
4. Half-fill the flask with deionized/distilled water, then mix to dissolve all the solute.
5. Dilute the solution "to the mark".
6. Stopper and invert the flask several times to ensure thorough mixing.

Notes on Preparing Solutions

Volumetric analysis techniques (ex. titrations) depend on the ability to prepare solutions of an exactly known concentration \rightarrow most solids cannot do this!

Example:

NaOH crystals are very hydroscopic (absorb moisture from the air). If you use NaOH to make a solution:

- Part of the measured mass will be from the moisture that has been absorbed.
- This will result in less moles of NaOH being dissolved, which means the actual concentration will be less than calculated.

Notes on Preparing Solutions

Because of this issue, we will often make a solution, then standardize it using another solid that is called a Primary Standard.

Primary Standards are usually:

- Available in pure form (>99.9\% pure)
- Stable under normal storage condidtions
- Not hydroscopic or reactive with air
- Reasonably soluble in water

By reacting a sample of a solution with a primary standard, we can get a much more accurate value for the true concentration of the solution.

Dilutions

Often it is necessary to take a concentrated solution and dilute it to a more desirable concentration.
\rightarrow increasing the amount of solvent, without affecting the amount of solute.

The formula for dilution is:

$$
M_{1} V_{1}=M_{2} V_{2}
$$

Where,
$\mathrm{M}_{1}=$ starting concentration $(\mathrm{mol} / \mathrm{L})$
$\mathrm{V}_{1}=$ volume (L)
$\mathrm{M}_{2}=$ final concentration $(\mathrm{mol} / \mathrm{L})$
$\mathrm{V}_{2}=$ final volume (L)

It is important to note that V2 is not the amount of solvent added, it is total volume after diluting.

Dilution Example Problems

1. 50 mL of concentrated Hydrochloric Acid ($12 \mathrm{~mol} / \mathrm{L}$) is to be diluted to $0.5 \mathrm{~mol} / \mathrm{L}$. How much water must be added?
2. What volume of concentrated Hydrochloric Acid must be diluted to prepare 500 mL of a $0.1 \mathrm{~mol} / \mathrm{L}$ solution?

Serial Dilutions

A Serial dilution is the stepwise dilution of a substance in solution used to accurately create highly diluted solutions as well as solutions for experiments resulting in concentration curves with a logarithmic scale.

Usually the dilution factor at each step is constant, resulting in a geometric progression of the concentration in a logarithmic fashion.

Serial Dilutions

Use the dilution formula to calculate the concentration in test tubes 2-5.

