Unit 1: Physical Properties and Changes

1. What is the difference between a physical change and a chemical change.
2. Are the following physical changes or chemical changes?
a. Iron Rusting
b. Gallium melts in your hand
c. A platinum wire is heated until it glows
d. Sugar is added to coffee
e. Water is filtered through a Brita
3. Draw the 3 states of matter at the molecular level. For each state, discuss the types of motion in each, the strength of the intermolecular forces, and properties (density, diffusion, volume, etc.)
4. Briefly describe the plasma state of matter.
5. What is an amorphous material? Give an example.
6. What is an allotrope? Give an example.
7. Define STP, state the conditions (pressure \& temperature) at STP.
8. Given the following graphs, which scenario will have a greater rate of evaporation? Why?

9. In the graphs in question \#9, what does the average kinetic energy of the molecules represent?
10. When does boiling occur? Your answer should not have anything to do with temperature.
11. What is the NORMAL boiling point of water? What does the word NORMAL mean in terms of boiling point?
12. How would the boiling point of water on Mount Everest compare to the the normal boiling point? Explain why at the molecular level.

Use the following graph to answer questions \#13-\#17

13. What is the melting point of the unknown substance? How can you tell?
14. What is the boiling point of the unknown substance? How can you tell?
15. What phases is/are present at each of the following points in time:
a. 2 min
b. 6 min
c. 11 min
d. 17 min
e. 26 min
f. 34 min
16. Explain why the temperature is not changing during the $5-10 \mathrm{~min}$ and $23-29 \mathrm{~min}$ intervals, even though the substance is still being heated.
17. How would the graph change if you:
a. Doubled the amount of heat applied?
b. Heated twice as much of the substance?
c. Cooled the substance from $140^{\circ} \mathrm{C}$ to $20^{\circ} \mathrm{C}$?
d. Used a different substance altogether?
18. Explain the process by which our body cools itself.
19. List the 6 different changes of state. For each, state whether it is exothermic or endothermic.
20. Define vapour pressure. If a substance has a high vapour pressure, what can you say about:
a. The strength of its intermolecular forces?
b. Its boiling point?
21. How does vapour pressure vary with temperature? Why?
22. Use the attached vapour pressure curve to answer the following questions.
a. What is the vapour pressure of acetic acid at $80^{\circ} \mathrm{C}$?
b. What is the approximate vapour pressure of chloroform at $0^{\circ} \mathrm{C}$?
c. What is the temperature at which the vapour pressure of ethanol is 50 kPa ?
d. Which of these substances has the highest vapour pressure?
e. Which of the three substances would evaporate fastest at room temperature?
f. Which of the three substances would evaporate slowest at room temperature?
g. Which substance has the weakest intermolecular forces?
h. From the graph, what are the normal boiling points of the four substances?
i. What would be the boiling point of water on a day when the atmospheric pressure is 95 kPa ?
j. j. Alcohol is heated in a container in which there is a partial vacuum. The air pressure in the container is 25 kPa . At what temperature will the alcohol boil?
k. If substance " X " had a normal boiling point of $30^{\circ} \mathrm{C}$, where would you expect to find the vapour pressure curve of "X"? Explain your answer.
I. What would the atmospheric pressure have to be in order to have ethanol boil at $20.0^{\circ} \mathrm{C}$?
m . If the temperature was $50.0^{\circ} \mathrm{C}$ and the atmospheric pressure was 20 kPa , which substances if any would boil?

Unit 2: Gases and the Atmosphere

1. What are the main gases that comprise our atmosphere? What is their relative abundance? For the 3 most abundant gases in our atmosphere, give their importance and how they are deposited.
2. Briefly describe the greenhouse effect. What are some major greenhouse gases and what are their sources?
3. State the major contributions of the following scientists:

- Galileo
- Torricelli
- Von Guericke
- Pascal
- Huygens
- Dalton
- Gay-Lussac
- Avogadro

4. Define the following terms:

- Pressure
- Standard Pressure
- Absolute zero

5. Explain why Galileo's pump could only raise water about 32 ft ?
6. Compare \& contrast manometers and barometers.
7. Compare and contrast mercury and aneroid barometers
8. State the relationships each of the following scientists developed. Show how they can be combined into one "combined gas law".

- Robert Boyle - Jaques Charles - Joseph Gay-Lussac

9. Describe how absolute zero was determined. A graphical representation may help here.
10. Convert 107.2 kPa into the other 4 units we have learned (atm, mmHg , bar, mbar).
11. If 35.0 mL of gas a 787 mmHg is changed to 17.90 mL at constant temperature, what is the final pressure?
12. If 4.75 L of gas at 1.74 atm is changed to 545 mmHg at constant temperature, what is the new volume?
13. If 3.20 L of gas a $0.00^{\circ} \mathrm{C}$ is changed to 2874 mL at constant pressure, what is the final temperature?
14. If 11.7 L of neon at $48^{\circ} \mathrm{C}$ is heated to $54^{\circ} \mathrm{C}$, what is the new volume?
15. A propane tank has a pressure of 140 mmHg at $25^{\circ} \mathrm{C}$. If the temperature drops to $-5^{\circ} \mathrm{C}$ what is the new pressure in the tank?
16. A gas has a pressure of 485 mmHg at $20^{\circ} \mathrm{C}$. If the pressure changed to 900 mmHg , what would the new temperature be?
17. A gas occupies a volume of 340.2 mL at a temperature of $15.0^{\circ} \mathrm{C}$ and a pressure of 5.8 atm . What will be the volume of this gas at standard conditions?
18. The volume of a gas originally at standard temperature and pressure was recorded as 278.8 mL . What volume would the same gas occupy when subjected to a pressure of 101.0 atm and temperature of minus $222.0^{\circ} \mathrm{C}$?
19. At a pressure of 760.0 mm Hg and $24.2^{\circ} \mathrm{C}$, a certain gas has a volume of 750.0 mL . What will be the volume of this gas under STP
20. A gas sample occupies 3.25 liters at $34.7^{\circ} \mathrm{C}$ and 825 mm Hg . Determine the temperature at which the gas will occupy 5454 mL at 1.75 atm.

Unit 3: Chemical Reactions

1. Name the following compounds:
a) $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$
d) $\mathrm{Sn}\left(\mathrm{NO}_{4}\right)_{2}$
b) NaHCO_{3} \qquad
e) CCl_{4}
c) $\mathrm{N}_{2} \mathrm{O}_{5}$
f) KMnO_{4}
2. Give the molecular formula for the following compounds.
a) dinitrogen trioxide \qquad d) Aluminum dichromate \qquad
b) copper (II) sulfate
e) ammonium phosphate \qquad
c) Chlorine \qquad f) diphosphorus pentoxide \qquad
3. State the law of conservation of mass, AND give an example of where you may see this in action (could be a demo, a real life example, etc.)
4. State the use of 2 isotopes that you studied in this course.
5. Elemental Boron is a combination of two naturally occurring isotopes: Boron-10 has a relative abundance of 19.78%, and boron- 11 has a relative abundance of 80.22 . Find the average atomic mass.
6. Determine the average atomic mass of the element Germanium from the relative abundances below.

Isotope	Relative Abundance
Ge-70	20.5%
$\mathrm{Ge}-72$	27.4%
$\mathrm{Ge}-73$	7.8%
$\mathrm{Ge}-74$	36.5%
$\mathrm{Ge}-76$	7.8%

7. Predict the products of the reactions below. Then write the balanced equation and the reaction type.
a. magnesium bromide + Chlorine \rightarrow
b. aluminum + iron(III) oxide \rightarrow
c. nitrogen + hydrogen \rightarrow
d. methanol + oxygen \rightarrow
8. Solve the following stoichiometry problems. Show all work.
a) How many moles of hydrogen are produced from the reaction of 12.8 g of zinc with excess hydrochloric acid?
b) How many grams of potassium chloride are produced if 25 g of potassium chlorate decompose? How many litres of O_{2} are produced? $\mathbf{2 K C l O} \rightarrow \mathbf{2 K C l}+\mathbf{3 O _ { \mathbf { 2 } }}$
c) If 10.0 g of aluminum chloride are decomposed, how many molecules of Cl_{2} are produced? $\mathbf{2 A I C l}_{\mathbf{3}} \rightarrow \mathbf{2 A I}+\mathbf{3 C l} \mathbf{2}^{2}$
d) Silver nitrate and sodium phosphate are reacted in equal amounts of 175 g each. How many grams of silver phosphate are produced? How many grams of the excess is remaining from problem d?
e) Given the reaction $\mathbf{C}_{\mathbf{3}} \mathbf{H}_{\mathbf{8}}+\mathbf{5 \mathbf { S O } _ { \mathbf { 2 } }} \rightarrow \mathbf{3 C O} \mathbf{2}+\mathbf{4} \mathbf{H}_{\mathbf{2}} \mathbf{O}+\mathbf{1 3 7 7} \mathbf{k J}$ How much energy is produced when 4700 grams of propane $\left(\boldsymbol{C}_{3} \boldsymbol{H}_{8}\right)$ is burned?
9. A sample of a molecule is found to contain 18.7% lithium, 16.3% carbon, and 65.0% oxygen. Find the empirical formula for the compound.
10. If the molar mass of the compound in question \#6 is known to be $73.8 \mathrm{~g} / \mathrm{mol}$, what is the molecular formula of the compound?
11. Determine the empirical and molecular formula for a compound that has a molar mass of $227 \mathrm{~g} / \mathrm{mol}$, and the following percent composition: 37.0% carbon, 2.20% hydrogen, 18.5% nitrogen and 42.3% oxygen.

Unit 4: Solubility

1. Describe how one could increase the solubility of a solid in a liquid.
2. A glass of cold water left sitting on a counter at room temperature usually develops many small gas bubbles on the inside of the glass. Describe what is likely happening.
3. Discuss how the solubility of a substance is dependent on the nature of the solute and solvent.
4. Solve the problems below.
a) What is the molarity of 5.30 g of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ dissolved in 400.0 mL solution?
b) How many grams of $\mathrm{Ca}(\mathrm{OH})_{2}$ are needed to make 100.0 mL of 0.250 M solution?
c) What volume of $\mathrm{Li}_{2} \mathrm{SO}_{3}$ is produced when 4.67 moles is dissolved to make a 1.89 M solution?
d) Ammonia solution is made by diluting 150 mL of the concentrated commercial reagent until the final volume reaches 850 mL . What is the concentration of the new solution?
e) Calculate the final concentration if 2.00 L of 3.00 M NaCl and 4.00 L of 1.50 M NaCl are mixed.
5. Explain the difference between an unsaturated, a saturated and a supersaturated solution.
6. What is meant by the saying "like dissolves like"
7. There are 9 different types of solutions. List 3 giving examples of each.
8. Explain, on a particle level, the difference between dissolving an ionic compound versus a molecular (covalent) compound.
9. Describe how you would use a 250 ml volumetric flask to make 250 ml of a $0.75 \mathrm{~mol} / \mathrm{L}$ solution of aluminum hydroxide. (show any calculations)
10. Use the attached solubility curve to answer the following questions:
a) What is the solubility of potassium nitrate in 100 grams of water at $40^{\circ} \mathrm{C}$?
b) What is the solubility of potassium chloride in 100 grams of water at $40^{\circ} \mathrm{C}$?
c) What is the solubility of sodium chloride in 100 grams of water at $80^{\circ} \mathrm{C}$?
d) What is the minimum temperature needed to dissolve 125 grams of potassium nitrate in 100 grams of water?
e) What is the minimum temperature needed to dissolve 25 grams of potassium chloride in 100 grams of water?
f) At what temperature do potassium chloride and potassium nitrate have the same solubility?
g) If 20 grams of potassium chlorate are mixed with 100 grams of water at $50^{\circ} \mathrm{C}$, how much will not dissolve?
h) If 200 grams of potassium nitrate are mixed with 100 grams of water at $55^{\circ} \mathrm{C}$, how much will not dissolve?
i) If 65 grams of sodium nitrate are added to 100 grams of water at $35^{\circ} \mathrm{C}$, how much more must be added to saturate the solution?
j) If 95 grams of potassium iodide are added to 100 grams of water at $15^{\circ} \mathrm{C}$, how much more must be added to saturate the solution?
k) 250 grams of water are saturated with sodium nitrate at $25^{\circ} \mathrm{C}$. If this solution is heated to $65^{\circ} \mathrm{C}$, how much more can be dissolved?
I) 30 grams of water at $70^{\circ} \mathrm{C}$ are saturated with potassium chlorate. If this solution is cooled to $25^{\circ} \mathrm{C}$, how much of the solid will precipitate (change, from the dissolved state to the solid state)?
m) How much potassium nitrate will dissolve in 55 grams of water at $50^{\circ} \mathrm{C}$?
n) How much potassium nitrate will dissolve in 10 grams of water at $50^{\circ} \mathrm{C}$?

Unit 5: Organic Chemistry

1. Draw each of the following structures and give the name of the group to which each belongs.
a) 3- ethyl-4 methyloctane
e) 2-ethyl-4-methyl 2-pentene
b) 3,4- diethyl-2 hexene
f) 2-butene
c) pentyl- butanoate
g) 2-propanol
d) 2-methyl butane
h) 2,4,-dimethyl-3 hexanol
I) 3,3-dimethylbutanoic acid
i) 3-ethyl-2,4-dimethyl-3-hexanol
m) 5 ethyl-2,2 dimethyl 3-octyne
j) 2,2,3,3-tetramethyl-1-butanol
n) butanoic acid
k) 3-ethyl-2-methyl heptanoic acid
2. Give the IUPAC name for each of the following:

3. Write a balanced equation for each of the following reactions. Use structural formulas for all organic compounds.
a) Hydrogenation of propene to propane
a) pentanoic acid reacting with propanol
c) 2-pentene dehydrogenated to pentane
d) The complete combustion of octane
4. Describe what is meant by saturated and unsaturated in organic chemistry.
5. What happens to the solubility of alcohols and carboxylic acids as the chain length increases?
6. Write the general formulas for each of the following:
a) alkanes
b) alkenes
c) alkynes
d) aromatic hydrocarbons
e) ester
f) carboxylic acid
g) alcohol
7. What is the name of the functional group in alcohols? In acids?
8. What are structural isomers? Draw and name 5 structural isomers of octane.
9. How many Litres of oxygen gas, at STP, are needed to burn 25.0 g of octane? (hint: think stoichiometry)
10. Choose an alkene. Write the hydrogenation and dehydrogenation reaction for your alkene. Be sure to include any catalysts/conditions that may be necessary, and to draw the expanded structural formula for all hydrocarbons.
11. a) Given the following starting monomer for polymerization, write the polymerization of three units. Clearly show the products

b) Classify the polymerization as CONDENSATION or ADDITION polymerization. Explain why.
12. How does the length of the carbon chain affect the melting/boiling points in aliphatic hydrocarbons?
13. Give a similarity and a difference between addition, condensation, and cross-linked polymers.

Vapour Pressure vs. Temperature for $\mathbf{C H C l}_{3}, \mathrm{CCl}_{4}$ and $\mathbf{H}_{\mathbf{2}} \mathrm{O}$

