
# **Review of CH30S**

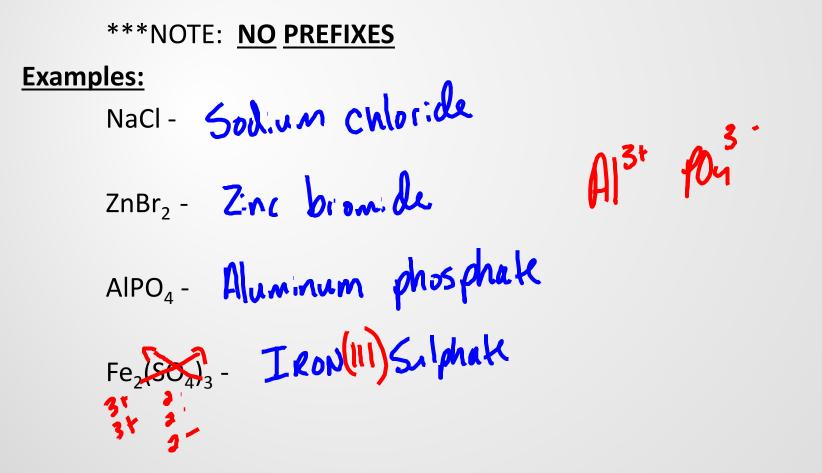


### Naming & Formula Writing:

### <u>Covalent Compounds</u> $\rightarrow$ <u>TWO NON-METALS</u>

Use the <u>PREFIX</u> system of naming.

| Mono=          | Hexa = 💪  |
|----------------|-----------|
| Di = 🧳         | Hepta = 구 |
| Tri = <b>3</b> | Octa = 😽  |
| Tetra = 4      | Nona = 💡  |
| Penta = 5      | Deca = 70 |
|                |           |


**Examples:** 

$$CO - Carbon monoxide
 $CO_2 - Carbon dioxide
SF_6 - Sulphur hexafluoride
N_2O_5 - dinitrogen pentoxide$$$

# Naming & Formula Writing:

### *Ionic Compounds* → METAL & NON-METAL

 When naming any ionic compound the name of the <u>CATION</u> (<u>POSITIVE</u> ion) is written <u>FIRST</u>, followed by the name of the <u>ANION</u> (<u>NEGATIVE</u> ion).



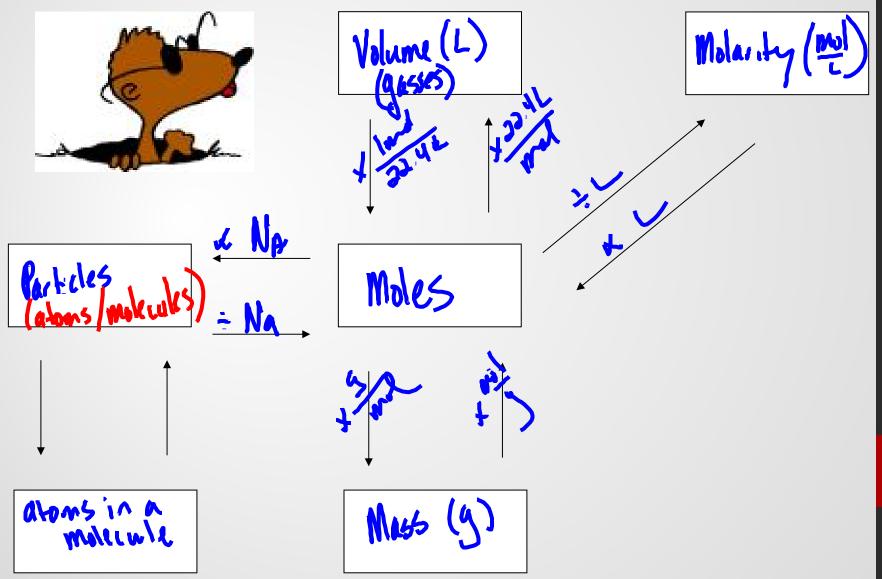
# Naming & Formula Writing:

### <u>Ionic Compounds</u> - Writing formulas from names:

<u>COMBINE</u> the ions so that the <u>CHARGES</u> <u>BALANCE</u> and the resulting compound is <u>NEUTRAL</u>. (<u>CRISS-CROSS METHOD</u>)

### **Examples:**

Sodium Sulfide –


Magnesium Hydroxide -

Aluminum Sulphate –

Lead (IV) Sulphate -

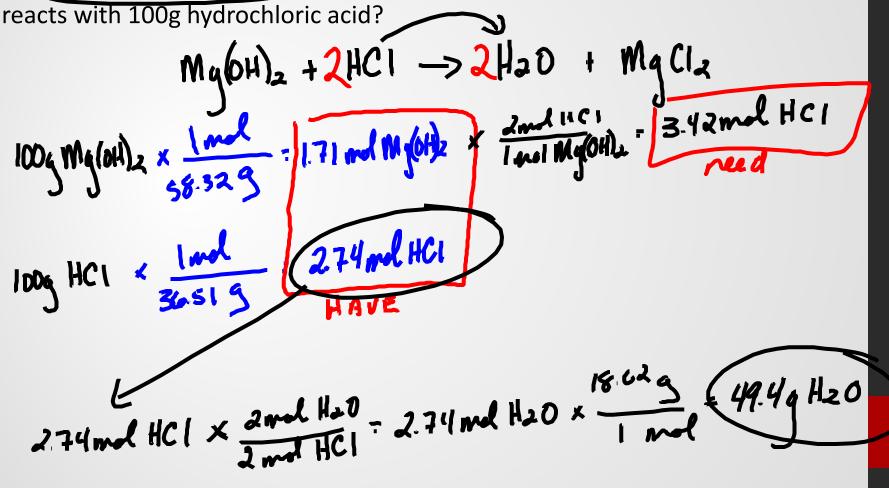
### Mole Conversions:

We can use the mole highway to review mole conversions...



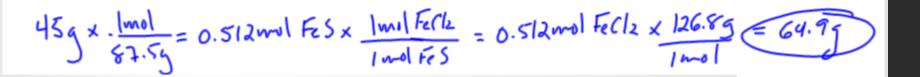
To solve any stoichiometry problem, follow these steps:

- 1. **BALANCE** the equation.
- 2. Use units to **<u>CONVERT</u>** the given value(s) to <u>**MOLES**</u>
- If you are given values for <u>2 SPECIES</u>, you need to determine which is the <u>LIMITING FACTOR</u> using <u>MOLE RATIOS</u>.


21/2 + 02 ->21/20

- 4. Set up a <u>MOLE RATIO</u>, and solve for the moles of the required species using the <u>LIMITING FACTOR</u>.
- <u>CONVERT</u> your units to the units asked for in the question (moles, mass, volume, particles)

Stoichiometry:  
Examples:  
1. How much 
$$CO_2$$
 will be produced by the combustion of 5kg of propane  
 $(C_3H_8)$ ?  
 $(C_3H_8 + 5O_2 \rightarrow 5CO_2 + 4H_2 O)$   
 $(C_3H_8 + 5O_2 \rightarrow 5CO_2 + 4H_2 O)$   
 $SOOS_4 \times \frac{1}{44.08} g = 113.4 \text{ mol} C_3H_8 \times \frac{3 \text{ mol} CO_2}{1 \text{ mol} C_3H_8} - 340.2 \text{ mol} CO_2$   
 $340.2 \text{ mol} \times \frac{44}{1 \text{ mol}} = 14.968.8 \text{ g CO}_2$ 


**Examples:** 

2. How many grams of H2O re produces when 100g of magnesium hydroxide



#### Try these ones...

1) 45.0g of Iron (II) sulphide is mixed with excess hydrochloric acid (HCl). How many grams of Iron (II) chloride will be formed?



#### Try these ones...

2) Calculate the volume of Hydrogen gas produced when 5.0g of aluminum is mixed with 4.0g of sulphuric acid.

$$2AI + 3H_{2}SO_{4} \longrightarrow Al_{2}(SO_{4})_{3} + 3H_{2}$$

$$4g H_{2}SO_{4} \times \frac{|mol|}{283} + 0.041 mol| \times \frac{2molAI}{3molH^{2}SO_{4}} = 0.027 molAl Need \therefore HSO_{4}IS$$

$$5g AI \times \frac{|mol|}{27g} = 0.185 mol}{Have} \times \frac{3molA2}{3molH^{2}SO_{4}} = 0.041 molH_{2} \times \frac{22.4L}{3molH^{2}SO_{4}} = 0.041 molH_{2} \times \frac{22.4L}{1mol} = 0.91L$$

# Solubility:

### Saturated Solution

Contains as much <u>SOLUTE</u> as <u>POSSIBLE</u> at a given <u>TEMP</u>.

### **Unsaturated Solution**

Has <u>LESS</u> than the <u>MAX</u>. <u>AMOUNT</u> of <u>SOLUTE</u> at a given <u>TEMP</u>.

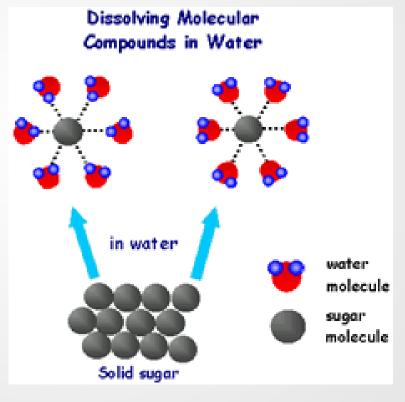
### Supersaturated Solution

Has <u>MORE</u> than the <u>MAX</u>. amount of <u>SOLUTE</u> at a given <u>TEMP</u>.

### **Dissolving and Dissociating:**

### When IONIC COMPOUNDS dissolve they DISSOCIATE:

→ DISSOCIATION equation: Na(1(5) -> Nat + Clap)




**Dissociation Example** 

# **Dissolving and Dissociating:**

When <u>COVALENT</u> <u>COMPOUNDS</u> dissolve they are simply <u>SURROUNDED</u> by <u>SOLVENT</u> particles (they <u>DON'T</u> break apart!)

> Equation: ( CHUOG (S) -> ( CGHUOG (Gg)



**Dissolving a Covalent Compound**