Review of CH30S

Naming \& Formula Writing:

Covalent Compounds \rightarrow TWO NON-METALS

- Use the PREFIX system of naming.

Mono $=$	1	Hex $=6$
Di $=$	2	Hepta $=7$
Mri $=$	3	Octa $=8$
Tetra $=$	4	Nona $=9$
Penta $=5$	Dena $=10$	

Examples:
CO - Carbon monoxide
CO_{2} - Cuban dioxide
SF_{6} - Sulphur hexafluor:dh
$\mathrm{N}_{2} \mathrm{O}_{5}$ - dinitrogen pentoxile

Naming \& Formula Writing:
Ionic Compounds \rightarrow METAL \& NON-METAL

- When naming any ionic compound the name of the CATION (POSITIVE
ion) is written FIRST, followed by the name of the ANION (NEGATIVE ion).
***NOTE: NO PREFIXES
Examples:
NaCl-Sod.um chloride
ZnBr $_{2}$ - Zinc bromide

$$
\mathrm{Al}^{3+} \mathrm{PO}_{4}^{3 \cdot}
$$

AlPO_{4} - Aluminum phosphate

$3 k_{2}$
3
j

Naming \& Formula Writing:

Ionic Compounds - Writing formulas from names:

- COMBINE the ions so that the CHARGES BALANCE and the resulting compound is NEUTRAL. (CRISS-CROSS METHOD)

Examples:

Sodium Sulfide -

Magnesium Hydroxide -

Aluminum Sulphate -

Lead (IV) Sulphate -

Mole Conversions:

Stoichiometry:

To solve any stoichiometry problem, follow these steps:

1. BALANCE the equation.
$2 \mathrm{H}_{3}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$
109
2. Use units to CONVERT the given value(s) to MOLES
3. If you are given values for $\mathbf{2}$ SPECIES, you need to determine which is the LIMITING FACTOR using MOLE RATIOS.
4. Set up a MOLE RATIO, and solve for the moles of the required species using the LIMITING FACTOR.
5. CONVERT your units to the units asked for in the question (moles, mass, volume, particles)

Stoichiometry:

$$
\begin{aligned}
& \begin{array}{l}
\text { Examples: } 9 \\
\text { 1. How much } \mathrm{CO}_{2} \text { will be produced by the combustion of } 5 \mathrm{~kg} \text { of propane }
\end{array} \\
& \left(\underline{\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)}\right. \text { ? } \\
& \mathrm{C}_{3} \mathrm{H}_{8}+\mathrm{SO}_{2} \rightarrow \mathrm{SCO}_{2}+4 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

$$
\begin{aligned}
& 340.2 \mathrm{~mol} \times \frac{44 \mathrm{~s}}{1 \mathrm{~mol}} 14968.8 \mathrm{gCO}
\end{aligned}
$$

Stoichiometry:
Examples:
2. Hen many grams of H 2 O re produces when 100 g of magnesium hydroxide reacts with 100 g hydrochloric acid?

$$
\begin{aligned}
& \mathrm{My}(\mathrm{HH})_{2}+2 \mathrm{HCl} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{MgCl}_{2}
\end{aligned}
$$

$$
\begin{aligned}
& 2.74 \mathrm{~mol} \mathrm{HCl} \times \frac{2 \mathrm{md} \mathrm{H}_{2} \mathrm{O}}{2 \mathrm{molHCl}}=2.71 \mathrm{md} \mathrm{H} \mathrm{H} \times \frac{18 \mathrm{Cl}^{2} \mathrm{~g}}{1 \mathrm{~mol}}-49.4 \mathrm{~g} \mathrm{H} 2 \mathrm{O}
\end{aligned}
$$

Stoichiometry:
Try these ones...

1) 45.0 g of Iron (II) sulphide is mixed with excess hydrochloric acid (HCl). How many grams of Iron (II) chloride will be formed?

$$
\mathrm{FeS}+2 \mathrm{HCl} \rightarrow \mathrm{H}_{2} \mathrm{~S}+\mathrm{FeCl}_{2}
$$

$$
45 \mathrm{~g} \times \frac{. \mathrm{mol}}{87.5 \mathrm{~g}}=0.512 \mathrm{~mol} \mathrm{FeS} \times \frac{1 \mathrm{~mol} / \mathrm{FeCl}}{1 \mathrm{~mol} / \mathrm{FeS}}=0.512 \mathrm{~mol} \mathrm{FeCl} 2 \times \frac{126.8 \mathrm{~g}}{1 \mathrm{~mol} \mid}=64.9 \mathrm{~g}
$$

Stoichiometry:
Try these ones...
2) Calculate the volume of Hydrogen gas produced when 5.0 g of aluminum is mixed with 4.0 g of sulphuric acid.

$$
\begin{aligned}
& 2 \mathrm{Al}+3 \mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}+3 \mathrm{H}_{2}
\end{aligned}
$$

$$
\begin{aligned}
& 0.041 \mathrm{molH}_{2} \mathrm{SO}_{4} \times \frac{3 \mathrm{~mol} \mathrm{H}}{3 \mathrm{~mol} \mathrm{H}} \mathrm{SO}_{4} \mathrm{~m}=0.041 \mathrm{~mol} \mathrm{H} 2 \times \frac{22.4 \mathrm{~L}}{1 \mathrm{~mol}}=0.91 \mathrm{~L}
\end{aligned}
$$

Solubility:

Saturated Solution

- Contains as much SOLUTE as POSSIBLE at a given TEMP.

Unsaturated Solution

- Has LESS than the MAX. AMOUNT of SOLUTE at a given TEMP.

Supersaturated Solution

- Has MORE than the MAX. amount of SOLUTE at a given TEMP.

Dissolving and Dissociating:

When IONIC COMPOUNDS dissolve they DISSOCIATE:
\rightarrow DISSOCIATION equation: $\mathrm{NaCl}(s) \rightarrow \mathrm{Na}_{(\mathrm{aq})}^{+}+\mathrm{Cl}_{\mathrm{aq})}^{-}$

Dissociation Example

Dissolving and Dissociating:

When COVALENT COMPOUNDS dissolve they are simply SURROUNDED by SOLVENT particles (they DON'T break apart!)
\rightarrow Equation: $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(\mathrm{~s}) \rightarrow \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(\mathrm{aq})$

Dissolving a Covalent Compound

