## CH40S

1. Indicate if the following compounds are soluble or not. If they are not soluble, write the formula for the compound.
a. Barium hydroxide
d. Copper(II) chloride
b. Aluminum nitrate
e. Tin (II) sulphate
c. Magnesium phosphate
f. Lithium carbonate
2. Write the complete set of reactions (molecular, ionic, and net ionic) for the following reactions:
a. Ammonium sulphate and barium carbonate
b. Sodium hydroxide and nickel(II) chloride
c. Strontium hydroxide and calcium iodide
d. Aluminum nitrate and magnesium sulphate
e. Ammonium phosphate and calcium chloride
3. Compare and contrast how ionic and covalent compounds dissolve in water.
4. define and give an example of the following:
a. Weak electrolyte
b. Strong electrolyte
c. Non-electrolyte
5. Determine the concentrations of the anions and cations produced in the following solutions (assume all are soluble):
a. 0.15 M sodium sulfate
c. 0.025 M Barium hydroxide
b. 3.2M Lead(IV) nitrate
d. 1.5 M ammonium phosphate
6. Give three properties of acids and bases.
7. Write balanced neutralization reactions between the following acids and bases:
a. Sodium hydroxide and hydrochloric acid
b. Magnesium hydroxide and phosphoric acid
c. Lithium hydroxide and acetic acid
d. Carbonic acid and aluminum hydroxide
8. What is the concentration of a sodium hydroxide solution when 30.0 mL of 0.5 M hydrochloric acid are needed to neutralize 50.0 mL of the base?
9. What is the concentration of acetic acid in vinegar when 52.5 mL of 0.48 M sodium hydroxide are needed to neutralize 17 mL of the vinegar solution?
10. What volume of 0.00250 M phosphoric acid is needed to neutralize 22 mL of 0.00530 M calcium hydroxide?
11. Calculate the volume of 2.2 M sulphuric acid needed to neutralize a solution made with 2.45 g of sodium hydroxide.
12. What mass of solid barium hydroxide is needed to neutralize 75.0 mL of 0.25 M phosphoric acid?
13. Find the molar mass of an unknown monoprotic acid HA if it takes 25.00 mL of 0.175 M sodium hydroxide to neutralize 0.900 g of the unknown acid.
14. For each of the following reactions, determine the substance oxidized, the substance reduced, the oxidizing agent and the reducing agent.
a. $\mathrm{P}+\mathrm{HNO}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{NO}$
b. $\mathrm{Al}+\mathrm{CuSO}_{4} \rightarrow \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}+\mathrm{Cu}$
c. $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+\mathrm{H}_{2} \mathrm{O}+\mathrm{S} \rightarrow \mathrm{SO}_{2}+\mathrm{KOH}+\mathrm{Cr}_{2} \mathrm{O}_{3}$
d. $\mathrm{HNO}_{3}+\mathrm{SO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{NO}$
15. Balance the redox reactions in question \#14.
16. Balance the following redox reactions:
a. $\mathrm{HNO}_{2}+\mathrm{I}^{-} \rightarrow \mathrm{NO}+\mathrm{I}_{2}$ (in acidic solution)
b. $\mathrm{MnO}_{4}^{-}+\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{Mn}^{2+}+\mathrm{O}_{2}$ (in acidic solution)
c. $\mathrm{CuS}+\mathrm{NO}_{3}^{-} \rightarrow \mathrm{Cu}^{2+}+\mathrm{NO}_{2}+\mathrm{S}$ (in acidic solution)
d. $\mathrm{MnO}_{2}+\mathrm{ClO}_{3}^{-} \rightarrow \mathrm{MnO}_{4}{ }^{2-}+\mathrm{Cl}^{-}$(in basic solution)
e. $\mathrm{N}_{2} \mathrm{O}_{4}+\mathrm{Br}^{-} \rightarrow \mathrm{NO}_{2}^{-}+\mathrm{BrO}_{3}^{-}$(in basic solution)
f. $\mathrm{CrO}_{2}{ }^{-}+\mathrm{ClO}^{-} \rightarrow \mathrm{CrO}_{4}{ }^{2-}+\mathrm{Cl}^{-}$(in basic solution)
