Titrations Introduction...

Outcomes:

- Using a standardized acid, determine the concentration of an unknown base.
- Perform a lab to demonstrate the stoichiometry of a neutralization reaction between a strong acid and base

Titrations:

A TITRATION is the PRECISE addition of a STANDARD SOLUTION of known CONCENTRATION (called the TITRANT) from a BURET into a MEASURED volume of a SAMPLE solution (the SAMPLE).

Equivalence Point \& Endpoint:

- Recall that when an ACID or BASE is just NEUTRALIZED, the MOLES of HYDRONIUM and HYDROXIDE ions are EQUAL. We call the point at which the standard solution JUST NEUTRALIZES the sample the EQUIVALENCE POINT.
- We can determine the EQUIVALENCE POINT by using an INDICATOR or a pH METER to measure pH change as the titration progresses.
- If an INDICATOR is used, the point at which the desired colour forms is called the ENDPOINT. We choose indicators so the ENDPOINT and EQUIVALENCE point are CLOSE.

Note:

- The ENDPOINT and EQUIVALENCE point are NOT the SAME thing.

Titration Procedure:

Example:

Titration of an unknown HCl solution with a standardized (known) 0.100 M NaOH solution.

1. We measure a sample (aliquot) of the unknown HCl solution and place in an Erlenmeyer flask.
2. Fill a buret with our standard NaOH solution.

3. We will use phenolphthalein as our indicator by putting a few drops into the flask.
4. Phenolphthalein turns pink at $\mathrm{pH}=8.2$. This is our endpoint.
5. We slowly add NaOH to the flask, with swirling, until the solution in the flask turns light pink.
6. We then take a reading on the buret to find the amount of base used.

$$
8.411 \mathrm{ml}
$$

7. We repeat the procedure until we have several pieces of consistent data.

Titration Procedure:
Example:
Titration of an unknown HCl solution with a standardized (known) 0.100 M NaOH solution.

Data:

Concentration of $\mathrm{NaOH}:$	$0.1 \frac{\mathrm{~mol}}{\mathrm{~L}}$
Volume of NaOH used to neutralize HCl	$8.41-0.19=8.22 \mathrm{~mL}$
Volume of HCl aliquot (sample)	10 ml

$$
\begin{aligned}
& \mathrm{HCl}+\mathrm{NoOH}_{\mathrm{O}} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O} \\
& 0.01 \mathrm{~L} \quad 0.1 \frac{\mathrm{~mol}}{\mathrm{~L}} \\
& \frac{\mathrm{~mol}}{\mathrm{~L}} \quad 0.0822 \mathrm{~L}
\end{aligned}
$$

$$
\begin{aligned}
0.0822 \mathrm{~L} \times \frac{0.1 \mathrm{~mol}}{1 L} & =0.00822 \mathrm{~mol} \mathrm{NaOH} \times \frac{1}{1}=0.00822 \mathrm{~mol} \mathrm{HCl} \\
\frac{0.00822 \mathrm{molHCl}}{0.01 \mathrm{~L}} & =0.0822 \frac{\mathrm{~mol}}{\mathrm{~L}}
\end{aligned}
$$

Titration Examples:

1. Determining concentration:

A titration was performed using a standard solution of 0.10 M NaOH into an unknown HCl solution. The following data was obtained:

Volume of unknown: 11.44 mL
Volume NaOH used: 13.83 mL
Determine the concentration of the acid:

$$
\begin{gathered}
\begin{array}{l}
\mathrm{HCl}+\mathrm{NaOH} \\
0.01144 \mathrm{~L} \\
0.1 \frac{\mathrm{moll}}{\mathrm{~L}} \\
0.01383 \mathrm{~L}
\end{array} \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O} \\
0.01383 \mathrm{~L} \times \frac{0.1 \mathrm{~mol}}{\mathrm{~L}}=0.001383 \mathrm{~mol} \mathrm{NaOH} \times \frac{1}{1}=0.001383 \mathrm{~mol} \\
\frac{0.001383 \mathrm{~mol}}{0.01144 \mathrm{~L}}=0.121 \frac{\mathrm{~mol}}{\mathrm{~L}}
\end{gathered}
$$

Titration Examples:
2. Determining mass of unknown:

A student receives a sample of a monoprotic acid HA (molar mass $97.09 \mathrm{~g} / \mathrm{mol}$) and dissolves the sample in enough water to make 100 mL of solution. The student takes a 12 mL aliquot and titrates with 0.0985 M NaOH . If 13.38 mL NaOH is needed to reach the endpoint, what is the mass of the

$$
\begin{aligned}
& \text { sample of acid? } \\
& \mathrm{HA}+\mathrm{NaOH} \rightarrow \mathrm{NaA}+\mathrm{H}_{2} \mathrm{O} \\
& 12 \mathrm{ml} \quad 0.0985 \frac{\mathrm{~mol}}{\mathrm{~L}} \\
& 0.01338 \mathrm{~L} \\
& 0.01338 \mathrm{~L} \times \frac{0.0985 \mathrm{~mol}}{1 L}=1.32 \times 10^{-3} \mathrm{~mol} \mathrm{NaOH} \times \frac{1}{1}=1.32 \times 10^{-3} \mathrm{~mol} \mathrm{HA} \\
& \frac{1.32 \times 10^{3} \mathrm{molHA}}{0.012 \mathrm{~L}}=0.11 \frac{\mathrm{~mol}}{\mathrm{~L}}=[S A M P L E] \\
& 0.1 \mathrm{~L} \times \frac{0.11 \mathrm{~mol}}{L}=0.011 \mathrm{~mol} \times \frac{97.09 \mathrm{~g}}{1 \mathrm{~mol}} 1.07 \mathrm{~g}
\end{aligned}
$$

