Density & Molar Volume

Outcome:

Calculate the volume of a given mass of a gaseous substance from its density at a given temperature and pressure. *Include Molar Volume*

Density Review

Density:

- Is the <u>MASS</u> of a substance in a <u>SPECIFIC VOLUME</u> and can be measured in units like <u>g/L, g/mL, g/cm³</u>, etc.
- Is a characteristic <u>PHYSICAL PROPERTY</u> of different substances. (i.e. foam is less dense than rubber)

http://publish.illinois.edu/cenayciencias/density-lesson/

Density Review

The <u>SAME</u> <u>VOLUMES</u> of different gases will have different <u>DENSITIES</u>, even with the same number of particles because of their <u>MOLAR</u> <u>MASSES</u>...

Density Review

We can think of density like a ratio (just like molar mass). Ex) The density of aluminum is 2.7g/cm³

 $\frac{2.79}{1 \text{ cm}^3}$ GR $\frac{1 \text{ cm}^3}{2.79}$

Density Calculations

Examples:

1. If 10ml of water weighs 10g, what is the density of water?

$$\frac{10g}{10ml} = 1g/ml$$

2. If a diamond has a density of 3.51g/cm³, what would be the mass of a 1cm³ diamond?

$$Cm^{3} \times \frac{3.51 \text{ g}}{1 \text{ cm}^{3}} = 3.51 \text{ g}$$

Density Calculations

Examples:

3. Copper has a density of 8.92g/cm³. What would be the volume occupied by 18g of copper?

$$18g \times \frac{1 \text{ cm}^3}{8.92 \text{ g}} = 2.02 \text{ cm}^3$$

Molar Volume is the <u>VOLUME</u> occupied by <u>1 MOLE</u> of a <u>GAS</u>.

At Standard Temperature and Pressure, (<u>STP</u>) (*0 °C, 101.3 kPa*) <u>1MOL</u> of a <u>GAS</u> occupies <u>22.4 L</u>. Therefore,

http://www.tutorvista.com/content/science/science-i/atoms-molecules/molecular-mass-mole.php

At ROOM TEMPERATURE (25°C), 1 MOLE of a GAS will occupy 24.4L

If we know the volume occupied, we can calculate the number of moles present:

Examples:

1. Calculate the number of moles of O₂ gas that occupies 67.2L at STP.

$$67.2L \times \frac{1}{22.4L} = 3mol$$

Examples (con't):

2. Calculate the volume of 3.0 mol of O_2 gas at STP.

3. What is the mass of 1L of nitrogen gas at STP?

12

We can prove the molar volume of gases using their densities at STP...

Calculate the molar volume of hydrogen gas if its density is 0.08999 g/L at STP.

42

assume [1] Hz
() 0.089999 x
$$\frac{1 \text{ mol}}{2.02 \text{ g}} = [0.0445 \text{ mol}]$$

Molar Volume = $\frac{11}{0.0445 \text{ mol}} = 22.47 \text{ /mol}$