
Solubility Calculations

Snapshots at jasonlove.com

Outcome:

Solve problems involving Ksp

Solubility Calculations...

We have already seen how to work between Ksp and **<u>SOLUBILITY</u>**, now we will look at some different types of solubility problems.

Examples:

1. Comparing solubilities...

- To compare the <u>SOLUBILITY</u> of two <u>SALTS</u>, compare the <u>Ksp</u> <u>VALUES</u>.
- The <u>LARGER</u> the <u>Ksp</u>, the <u>GREATER</u> the <u>SOLUBILITY</u> (more <u>IONS</u> produced → more <u>PRODUCT</u>).
- Ex) Which of the following salts has the greatest solubility

in water?
Lead (II) Chloride (Ksp = 1.6x10⁻⁵)
$$\neq$$
 Larger Ksp = more ions in Sol-
OR
Copper (I) lodide (Ksp = 1.1x10⁻¹²) \neq Larger Ksp = more ions in Sol-
in More has dissolved
(more soluble)

Solubility Calculations...

2. Find ion concentration given Ksp...

Use an <u>ICE TABLE</u> and plug unknown values into Ksp expression.

Example:

KSP

The Ksp of magnesium hydroxide is 8.9×10^{-12} . Find the concentration of the dissolved ions in a saturated solution of Mg(OH)₂.

$$M_{y}(0|1)_{2(s)} = M_{y} + 20|1$$

$$-x + x = 2x$$

$$\emptyset \quad x = 1.31 \times 10^{-4} \text{ mol}$$

$$\int 0|1-7 = 2x = 2.62 \times 10^{-4} \text{ mol}$$

 $K_{5p} = [M_{g}^{2+}] [OH^{-}]^{2}$ $S \cdot 9 \times 10^{-12} = (X) (2X)^{2}$ $S \cdot 9 \times 10^{-12} = 4x^{3}$ $X = 3 \frac{8 \cdot 9 \times 10^{-12}}{4}$ $X = 1 \cdot 31 \times 10^{-4} \frac{mol}{2} = 50 lubility 0$ $Mg(OH)_{2}$

Note: This is the same as finding the solubility. We can use our answer to find solubility as before...

Solubility Calculations...

- 3. Maximum amount of ions before precipitation...
 - Ksp tells us the <u>PRODUCT</u> of the <u>MAXIMUM</u> ION <u>CONCENTRATIONS</u> that can be <u>DISSOLVED</u>.
 - Any ion <u>PRODUCT</u> that <u>EXCEEDS</u> the <u>Ksp</u> will result in <u>PRECIPITATION</u>.
 - Simply solve for the ion <u>CONCENTRATION</u> as before → this is the <u>MAXIMUM AMOUNT</u> of that <u>IONS</u> that can be present before <u>PRECIPITATION</u>.

Ex) The Ksp of CuCl is 3.2×10^{-7} . If the concentration of Cl is 4.1×10^{-5} mol/L, what is the concentration of Cu⁺ that will start the precipitation?

$$\begin{aligned} \text{CuCl(s)} &= \text{Cu}_{(a_1)}^{+} \text{Cl}_{(a_2)}^{-} \\ &= \text{Cu}_{(a_1)}^{+} \text{Cl}_{(a_2)}^{-} \\ &= \text{Cu}_{(a_1)}^{+} \text{Cl}_{(a_2)}^{-} \\ &= \text{Cu}_{(a_2)}^{+} \text{Cl}_{(a_2)}^{-} \\ &= \text{Cu}_{(a_2)}^{-} \\$$