Rate Law

https://www.pinterest.com/pin/442267625876101351/

Outcomes:

• Determine the rate law of a chemical reaction from experimental data.

Rate Law:

- An **EXPRESSION** which relates the **RATE** of a reaction to the **CONCENTRATION** of the reactants.
- Allows us to <u>CALCULATE</u> the <u>RATE</u> of a reaction with given <u>CONCENTRATIONS</u> of <u>REACTANTS</u>.
- Shows the <u>QUANTITATIVE</u> effect of <u>CONCENTRATION</u> on reaction rate.

Rate Law:

Example:

For the reaction: $A \rightarrow Products$

$$Avg.Rate = \frac{\Delta[A]}{\Delta t}$$

The rate of consumption of **A** is **DIRECTLY PROPORTIONAL** to its **CONCENTRATION**.

• i.e. the **FASTER A** is **CONSUMED**, the **LOWER** its **CONCENTRATION**.

This is represented by the equation:

$$Rate = k[A]^x$$

Where:

k is the <u>RATE CONSTANT</u>
[A] is the <u>CONCENTRATION</u> of A *x* is a power, called the <u>ORDER OF THE REACTION</u>

Rate Law:

The Rate Constant (k):

- Can only be determined <u>EXPERIMENTALLY</u>.
- Is <u>SPECIFIC</u> for each <u>REACTION</u> at a specific <u>TEMPERATURE</u>, since its value depends on the <u>SIZE</u>, <u>SPEED</u> and <u>TYPE</u> of molecules.
- Changing <u>TEMPERATURE</u> changes <u>SPEED</u> of reactant molecules, which changes <u>RATE</u>
 <u>CONSTANT</u>.

• **TEMPERATURE** is the **ONLY FACTOR** that **AFFECTS** the rate **CONSTANT**

Order of Reaction: $A \rightarrow B$ RATE = $k [A]^{x}$

Reaction Order:

Indicates how the <u>CONCENTRATION</u> of reactants <u>AFFECTS</u> the <u>RATE</u> of the reaction. Can only be determined <u>EXPERIMENTALLY</u>. kale = k (A)' kale = k (A)' kale = k (A)'

First Order Reactions (X = 1)

- The reaction rate is **DIRECTLY PROPORTIONAL** to changes in reactant CONCENTRATION.
- If reactant concentration were:
 - **DOUBLED**, the rate would **DOUBLE**

• **TRIPLED**, the rate would **TRIPLE**, etc

$$RATE = k(3)$$

= 2K

Order of Reaction:

$RATE=KEA3^2$ $KATE=K(1)^2$ $KaTE=K(2)^2$ = |K

X4

 $Rate = K(3)^2$

Second Order Reactions (X = 2)

- **DOUBLING** the concentration would **QUADRUPLE** the rate.
 - i.e. 2^x = 2² = 4
- TRIPLING the concentration would INCREASE the rate by a FACTOR of 9:
 - i.e. *3^x = 3² = 9*

Zero Order Reaction (X = 0)

Here, a change in <u>CONCENTRATION</u> will <u>NOT AFFECT</u> the <u>RATE</u> of the reaction.

 $R_{ATE} = KEAJ^{\circ} = K(IXIZ^{3})^{\circ} = 9K$

• i.e. $2^x = 2^0 = 1$

Order of Reaction:

	Order of Reaction (exponent)				
Conc. Change	0	1	2	3	
x1	1 ⁰ = 1	1 ¹ = 1	1 ² = 1	1 ³ = 1	
x2 (doubling)	2 ⁰ = 1	2 ¹ = 2	2 ² = 4	2 ³ = 8	
x3 (tripling)	3 ⁰ = 1	3 ¹ = 3	3 ² = 9	3 ³ = 27	

Rate law & Order of Reaction:

Example:

For a reaction with more than one reactant:

 $A + B \rightarrow Products$

The rate law would be:

$$Rate = k[A]^{x}[B]^{y}$$

The rate depends on both [A] and [B]. Each reactant can affect the rate DIFFERENTLY.

The **total order of the reaction** is the **<u>SUM</u> of the <u>EXPONENTS</u> in the <u>RATE LAW</u>.**

Determining Rate Law – Initial Rate Method:

- Can only be done **EXPERIMENTALLY**.
- Even though rate does depend on stoichiometry to an extent, the rate law cannot be determined from <u>COEFFICIENTS</u>.
- We can <u>MEASURE</u> the effect on changes in concentration of one reactant on the rate by keeping the other reactant concentration <u>CONSTANT</u>.

Example:

What is the rate law for the following reaction, given the following experimental data?

$H_2O_2 + 2HI \rightarrow 2H_2O + I_2$

Example:

5[×]=45 ×=1

Find the rate law for the reaction: $2NO_{2(g)} + F_{2(g)} \rightarrow 2NO_2F_{(g)}$

	-19	/ -(9/	- (9)	
	[NO2] (mol/L)	[F2] (mo	l/L)	Rate (mol/L·s)
	0.0010 📈	0.001	0 \x3	0.4 3
_۱	√ 0.0010 √	1 (0.003	0 1	لم 1.2 ل
+	0.0050	0.003	0 5	6.0
	0.0050	0.005	0 🗸 🛛	10 7

Try this one...

When the reaction $CH_3CI_{(g)} + H_2O_{(g)} \rightarrow CH_3OH_{(g)} + HCI_{(g)}$ was studied, the following data was obtained:

× _ 4

		Sid aran			
\mathcal{D}	Trial	[CH ₃ Cl] (mol/L)	[H ₂ O] (mol/L)	Initial Rate (mol/L·s)	× ,
C	1	12 (0.100	√ \ / 0.100	8, 0.182	4~= 4
x d	2	0.200) 0.100 \)1.45	X = [
2=8	3	0.200 4	0.400 2 ^{×9}	5.81 🖌	~ - 1

20 100

Determine the rate law for this reaction...

RATE = K [CH3CI] (H20]

Finding the Value of K:

Once we have found the rate law for a reaction, we can find the value of the rate constant **k**. Simply **<u>SUBSTITUTE</u>** the data from <u>ANY TRIAL</u> into the rate law and solve for **k**.

Example:

For the reaction: $3A_{(g)} + B_{(g)} + 2C_{(g)} \rightarrow 2D_{(g)} + 3E_{(g)}$ the following data was obtained:

					_
Trial	[A](mol/L)	[B] (mol/L)	[C] (mol/L)	Rate (mol/Ls)	
1	0.10	0.10	0.10	0.20	2'=2
2	0.20	0.10	0.10	يلا / 0.40	$2^{2} = 4$
3	0.20	0.20	0.10	1.60	2 - 1
4	0.20	0.10	0.20	0.40	2'=0
5	0.50	0.40	0.25	??	
6	??	0.60	0.50	6.00	

a) Determine the Rate Law:

$$R_{ATE} = K[A][B]^{2}[C]^{0}$$

 $R_{ATE} = K[A][B]^{2}$

Finding the Value of K:

 $(\frac{mol}{mol}) (\frac{mol}{mol})^2 = \frac{mol}{mol} \times \frac{mol}{C} \times \frac{mol}{C}$

Example (con't):

<u> </u>						
	Trial	[A](mol/L)	[B] (mol/L)	[C] (mol/L)	Rate (mol/Ls)	
	1	0.10	0.10	0.10	0.20	
	2	0.20	0.10	0.10	0.40	
	3	0.20	0.20	0.10	1.60	
	4	0.20	0.10	0.20	0.40	
-7	5	0.50	0.40	0.25	??	
	> 6	??	0.60	0.50	6.00	
e value of the rate constant. $K = \frac{6.2 \text{ mol}}{1.5}$						nol
$\frac{1}{2} = K(0, \frac{1}{2})(0, \frac{1}{2})^2$			[(6.1 M	$e^{1} \left(0.1 \frac{m}{2} \right)^{2}$	(mol)	mo
ud)2	(0,1 m)(0.1 mot)2	K = 20	0		mol

b) Calculate the value of the rate constant.

$$RATE = K \Sigma A \int LB \int^{2}$$

$$\frac{0.2 \text{ mol}}{\frac{L \cdot 5}{L}} = \frac{K(0 + \frac{mot}{L})(0 + \frac{mot}{L})^{2}}{(0 + \frac{mot}{L})^{2}}$$

= 200 (0.5) (0.4)²

= 16 mol d) Calculate the concentration of A in trial #6. $RATE = 206 \ (A) \ (B)^{2} \qquad [A]^{3}$ $(a = 206 \ (A) \ (0.6)^{2}$ $[A] = \frac{1}{(200)(0.6)^2}$ [A] = 0.083 mol

(mol) MDB MO