Rate Law

https://www.pinterest.com/pin/442267625876101351/

Outcomes:

- Determine the rate law of a chemical reaction from experimental data.

Rate Law:

- An EXPRESSION which relates the RATE of a reaction to the CONCENTRATION of the reactants.
- Allows us to CALCULATE the RATE of a reaction with given CONCENTRATIONS of REACTANTS.
- Shows the QUANTITATIVE effect of CONCENTRATION on reaction rate.

Rate Law:

Example:
For the reaction: $\boldsymbol{A} \rightarrow$ Products

$$
\text { Avg.Rate }=\frac{\Delta[A]}{\Delta t}
$$

The rate of consumption of \boldsymbol{A} is DIRECTLY PROPORTIONAL to its CONCENTRATION.

- i.e. the FASTER A is CONSUMED, the LOWER its CONCENTRATION.

This is represented by the equation:

$$
\text { Rate }=k[A]^{x}
$$

Where: $\quad \boldsymbol{k}$ is the RATE CONSTANT [A] is the CONCENTRATION of A
x is a power, called the ORDER OF THE REACTION

Rate Law:

The Rate Constant (k):

- Can only be determined EXPERIMENTALLY.
- Is SPECIFIC for each REACTION at a specific TEMPERATURE, since its value depends on the SIZE, SPEED and TYPE of molecules.
- Changing TEMPERATURE changes SPEED of reactant molecules, which changes RATE CONSTANT.

TEMPERATURE is the ONLY FACTOR that AFFECTS the rate CONSTANT

Order of Reaction: $A \rightarrow B$

$$
R_{\text {at }}=k[A]^{x}
$$

Reaction Order:
Indicates how the CONCENTRATION of reactants AFFECTS the RATE of the reaction. Can only be determined EXPERIMENTALLY.

$$
\begin{aligned}
\text { Rate }=k[A]^{\prime} \quad \text { Rate } & =k(1)^{\prime} & R_{\text {ce }} & =k(2)^{\prime} \\
& =1 k & & =2 k
\end{aligned}
$$

First Order Reactions ($\mathrm{X}=1$)

- The reaction rate is DIRECTLY PROPORTIONAL to changes in reactant CONCENTRATION.
- If reactant concentration were:
- DOUBLED, the rate would DOUBLE
- TRIPLED, the rate would TRIPLE, etc

$$
\begin{aligned}
R_{\text {ATE }} & =k(3)^{\prime} \\
& =3 k
\end{aligned}
$$

Order of Reaction:

$$
\begin{aligned}
R_{\text {ATE }}=K[A]^{2} \quad R_{\text {Are }} & =k(1)^{2} \quad \begin{array}{l}
x_{2} \\
\\
\\
\end{array} \quad=1 K \quad k(2)^{2} \\
& =4 k
\end{aligned}
$$

Second Order Reactions ($\mathrm{X}=2$)

- DOUBLING the concentration would QUADRUPLE the rate.

$$
\text { - ie. } 2^{x}=2^{2}=4
$$

- TRIPLING the concentration would INCREASE the rate by a FACTOR of $\mathbf{9}$:
-ie. $3^{x}=3^{2}=9$

$$
\text { Rate }=k(3)^{2}
$$

Zero Order Reaction ($\mathrm{X}=0$)

$$
R_{\text {ATE }}=K[A]^{0}=K\left(1 \times 10^{23}\right)^{0}=9 K
$$

- Here, a change in CONCENTRATION will NOT AFFECT the RATE of the reaction.
-ie. $\mathbf{2}^{\boldsymbol{x}}=\mathbf{2}^{0}=\mathbf{1}$

Order of Reaction:

	Order of Reaction (exponent)			
Conc. Change	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
x1	$1^{0}=1$	$1^{1}=1$	$1^{2}=1$	$1^{3}=1$
x2 (doubling)	$2^{0}=1$	$2^{1}=2$	$2^{2}=4$	$2^{3}=8$
x3 (tripling)	$3^{0}=1$	$3^{1}=3$	$3^{2}=9$	$3^{3}=27$

Rate law \& Order of Reaction:

Example:

For a reaction with more than one reactant:

$$
A+B \rightarrow \text { Products }
$$

The rate law would be:

$$
\text { Rate }=k[A]^{x}[B]^{y}
$$

The rate depends on both $[A]$ and $[B]$. Each reactant can affect the rate DIFFERENTLY.

The total order of the reaction is the SUM of the EXPONENTS in the RATE LAW.

Determining Rate Law:

Determining Rate Law - Initial Rate Method:

- Can only be done EXPERIMENTALLY.
- Even though rate does depend on stoichiometry to an extent, the rate law cannot be determined from COEFFICIENTS.
- We can MEASURE the effect on changes in concentration of one reactant on the rate by keeping the other reactant concentration CONSTANT.

Determining Rate Law:
Example:
What is the rate law for the following reaction, given the following experimental data?

$$
\mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{HI} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{I}_{2}
$$

Trials $1 \neq 3,[\mathrm{HI}]=$ canst, $\left[\mathrm{H}_{2} \mathrm{O}_{2}\right] \times 2$, Rate $\times 2$

$$
2^{\prime}=2 \quad \therefore 1 \text { st } \operatorname{orden} \text { in }\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]
$$

Trials $192,\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]=$ const, $[\mathrm{HI}] \times 2$, Rate $\times 2$

$$
2^{\prime}=2 \quad \therefore 1^{\text {st }} \text { ordn ir }\{H I\}
$$

Determining Rate Law:
Example:
Find the rate law for the reaction: $\mathbf{2 N O}_{\mathbf{2 (g)}}+\boldsymbol{F}_{2(g)} \rightarrow \mathbf{2} \mathbf{N O}_{\mathbf{2}} \mathbf{F}_{(g)}$

$$
\begin{aligned}
3^{x} & =3 \\
x & =1
\end{aligned}
$$

$$
R_{A T K}=K\left[\mathrm{NO}_{2}\right]^{\prime}\left[\mathrm{F}_{z}\right]^{\prime}
$$

Determining Rate Law:
Try this one...
When the reaction $\mathrm{CH}_{3} \mathrm{Cl}_{(g)}+\mathrm{H}_{2} \mathrm{O}_{(g)} \rightarrow \mathrm{CH}_{3} \mathrm{OH}_{(g)}+\mathrm{HCl}_{(g)}$ was studied, the following data was obtained:

$$
\begin{gathered}
4^{x}=4 \\
x=1
\end{gathered}
$$

Determine the rate law for this reaction...

$$
R_{A T E}=K\left[\mathrm{CH}_{3} \mathrm{Cl}\right]^{3}\left[\mathrm{H}_{2} \mathrm{O}\right]^{\prime}
$$

Finding the Value of K:

Once we have found the rate law for a reaction, we can find the value of the rate constant \boldsymbol{k}. Simply SUBSTITUTE the data from ANY TRIAL into the rate law and solve for \boldsymbol{k}.

Example:

For the reaction: $3 A_{(g)}+B_{(g)}+2 C_{(g)} \rightarrow 2 D_{(g)}+3 E_{(g)}$ the following data was obtained:

a) Determine the Rate Law:

$$
\begin{aligned}
& R_{\text {ATE }}=K[A]^{\prime}[B]^{2}[C]^{0} \\
& R_{\text {ATE }}=K\left[A^{\prime}[B]^{2}\right.
\end{aligned}
$$

Finding the Value of K:

$$
\left(\frac{m_{0} l}{L}\right)\left(\frac{m_{0 l}}{c}\right)^{2}=\frac{m_{0} l}{c} \times \frac{m_{0} l}{c} \times \frac{m_{0} l}{c}
$$

Example (cont):

Trial	$[\mathrm{A}](\mathrm{mol} / \mathrm{L})$	$[\mathrm{B}](\mathrm{mol} / \mathrm{L})$	$[\mathrm{C}](\mathrm{mol} / \mathrm{L})$	Rate $(\mathrm{mol} / \mathrm{ls})$
1	0.10	0.10	0.10	0.20
2	0.20	0.10	0.10	0.40
3	0.20	0.20	0.10	1.60
4	0.20	0.10	0.20	0.40
	5	0.50	0.40	0.25

b) Calculate the value of the rate constant.

$$
\begin{aligned}
& R_{\text {ATE }}=K[A]^{\prime}[B]^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
K=\frac{0.2 \frac{\mathrm{~mol}}{\mathrm{~L} \cdot \mathrm{~s}}}{\left[\left(0 . \left\lvert\, \frac{\mathrm{mol}}{\mathrm{c}}\right.\right)\left(0 . \left\lvert\, \frac{\mathrm{mol} 1}{\mathrm{~L}}\right.\right)^{2}\right]} \begin{array}{l}
K=200
\end{array}\left\{\frac{\left(\frac{\mathrm{~mol}}{L \cdot \mathrm{~s}}\right)}{\left(\frac{\mathrm{mol}}{\mathrm{~L}}\right)\left(\frac{\mathrm{mol}}{\mathrm{~L}}\right)^{2}}\right. \\
\mathrm{mol}
\end{array} \\
& =\frac{\frac{m_{0} 1}{\angle \cdot s}}{\frac{m_{0} 13}{\angle 3}}
\end{aligned}
$$

c) Calculate the rate for trial $\# 5$.
$R_{A T E}=200[A][B]^{2}$.

$$
\begin{aligned}
& =200(\mathrm{~A} \\
& =200(0.5)(0.4)^{2} \\
& =16 \frac{\mathrm{~mol}}{\mathrm{~s}}
\end{aligned}
$$

$$
\begin{array}{rlrl}
\text { d) Calculate the concentration of } A \text { in trial \#6. } & =\frac{6}{R_{A T E}=200[A][B]^{2}} & {[A]=\frac{L^{32}}{(200)(0.6)^{2}}} \\
6=200[A](0.6)^{2} & {[A]=0.083 \frac{\mathrm{~mol}}{L}} & & =\frac{\mathrm{L}^{2}}{\mathrm{~mol}^{2} \cdot \mathrm{~s}}
\end{array}
$$

