pH of Weak/Strong Acids \& Bases...

Outcomes:

Write the equilibrium expression (K_{a} or K_{b}) from a balanced chemical equation.
Use K_{a} or K_{b} to solve problems for pH , percent dissociation, and concentration.

pH of Strong \& Weak Ac ids/Bases:

Recall that pH is the NEGATIVE LOGARITHM of the HYDRONIUM or HYDROXIDE ion CONCENTRATION in a solution.
pH of Strong Acids/Bases:

- Since strong acids/bases IONIZE COMPLETELY, we can simply use STOICHIOMETRY to find pH .

Example:

Find the pH of a 0.08 M solution of $\mathrm{Ba}(\mathrm{OH})_{2}$.

$$
\begin{aligned}
& \begin{array}{l}
\mathrm{Ba}(\mathrm{OH})_{2} \longrightarrow \mathrm{Ba}^{2+} \\
0.08 \longrightarrow 20 \mathrm{H} \\
0.16 \frac{\mathrm{~mol}}{\mathrm{~L}}
\end{array} \\
& \text { volt }=-\log 0.16=0.79 \\
& \rho H=14-0.79=13.21
\end{aligned}
$$

pH of Strong \& Weak Ac ids/Bases:

pH of Weak Acids/Bases:

- Since WEAK acids/bases do NOT ionize COMPLETELY, we CANNOT simply use stoichiometry.
- We must be given either the DISSOCIATION CONSTANT, or PERCENT IONIZATION.
- We must solve for the $\left[\mathrm{H}_{3} \underline{\mathrm{O}}^{+}\right]$or $\left[\mathrm{OH}^{-}\right]$as before, and then calculate pH.
pH of Strong \& Weak Ac ids/Bases:
pH of Weak Acids/Bases Examples:

1. Given K_{a} or K_{b} :

Calculate the pH of a 0.10 M solution of hydrogen sulfide $\left(\mathrm{K}_{\mathrm{a}}=1.0 \times 10^{-7}\right)$

$$
\begin{aligned}
& k_{a}=\frac{\left.\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \mathrm{CHS}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{~S}\right]} \\
& 1 \times 10^{-7}=\frac{(x)^{2}}{0.1-x} \text { assumed spall } \\
& X=\left\{\times 10^{-4} \frac{\mathrm{~mol}}{\mathrm{~L}}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\right. \\
& p H=-\log 1 \times 10^{-4}=4
\end{aligned}
$$

*** When determining pH , we only do so for the first donated proton, since the K_{a} for the second proton is very small (has no real effect on pH).
pH of Strong \& Weak Ac ids/Bases:
pH of Weak Acids/Bases Examples:
2. Given the percent dissociation:

Calculate the pH of a 0.03 M solution of sulfurous acid if 0.02% is ionized

$$
\left.\begin{array}{l}
\mathrm{H}_{2} \mathrm{SO}_{3}+\mathrm{H}_{2} \mathrm{O} \\
0.03 \\
-6 \times 10^{-6}
\end{array}\right)\left|\begin{array}{c}
\mathrm{H}_{3} \mathrm{O}^{+}+ \\
0 \\
+6 \times 10^{-6} \\
6 \times 10^{-6}
\end{array}\right|+\begin{aligned}
& \mathrm{SO}_{3}^{-} \\
& 0
\end{aligned}
$$

$$
\begin{aligned}
0.03 \times \frac{0.02 \%}{100}=6 \times 10^{-6} \frac{\mathrm{~mol}}{\mathrm{~L}} & =\left[\mathrm{H}_{3} 0^{+}\right] \\
\rho H & =-\log 6 \times 10^{-6}=5.22
\end{aligned}
$$

