pH of Weak/Strong Acids & Bases...

Outcomes:

Write the equilibrium expression (K_a or K_b) from a balanced chemical equation.

Use K_a or K_b to solve problems for pH, percent dissociation, and concentration.

Recall that pH is the **<u>NEGATIVE</u> <u>LOGARITHM</u>** of the <u>**HYDRONIUM**</u> or **<u>HYDROXIDE</u>** ion <u>**CONCENTRATION**</u> in a solution.

pH of Strong Acids/Bases:

 Since strong acids/bases <u>IONIZE</u> <u>COMPLETELY</u>, we can simply use <u>STOICHIOMETRY</u> to find pH.

Example:
Find the pH of a 0.08 M solution of
$$Ba(OH)_2$$
.
 $Ba(OH)_2 \longrightarrow Ba^{2+} + 2OH^{-}$
 $0.08 \longrightarrow 0.16 = 0.79$
 $\rho OH = -log 0.16 = 0.79$
 $\rho H = 14 - 0.79 = (13.21)$

pH of Weak Acids/Bases:

- Since <u>WEAK</u> acids/bases do <u>NOT</u> ionize <u>COMPLETELY</u>, we <u>CANNOT</u> simply use stoichiometry.
- We must be given either the <u>DISSOCIATION CONSTANT</u>, or <u>PERCENT IONIZATION</u>.
- We must solve for the [H₃O⁺] or [OH⁻] as before, and then calculate pH.

pH of Weak Acids/Bases Examples:

1. Given K_a or K_b:

Calculate the pH of a 0.10M solution of hydrogen sulfide ($K_a = 1.0 \times 10^{-7}$)

***When determining pH, we only do so for the first donated proton, since the K_a for the second proton is very small (has no real effect on pH).

pH of Weak Acids/Bases Examples:

2. Given the percent dissociation:

Calculate the pH of a 0.03M solution of sulfurous acid if 0.02% is ionized

$$H_{2}SO_{3} + H_{2}O \implies H_{3}O^{\dagger} + H_{SO_{3}}$$

$$O.O_{3} + 6 \times 10^{6} + 6 \times 10^{6} + 6 \times 10^{6}$$

$$0.03 \times \frac{0.022}{000} = 6 \times 10^{-6} \frac{mol}{L} = [H_30^+]$$

 $\rho H = -\log 6 \times 10^{-6} = 5.22$