Newton's 2nd Law

Outcome:

S2-3-06 Describe qualitatively how force is related to motion. *Include: no force, constant force,*

F=ma

More on Forces

How is the applied <u>FORCE</u> <u>RELATED</u> to the subsequent <u>MOTION</u> of the object? Does the size of the force affect the motion?

Force is proportional to acceleration.

• If we apply a <u>GREATER FORCE</u> we will have a <u>GREATER ACCELERATION</u> (including speeding up and slowing down).

Force is proportional to mass.

MORE MASSIVE OBJECTS require MORE FORCE to accelerate (change speed).

Force can change the direction of motion.

Looks at the relationship between an object's MASS and its ACCELERATION.

- The <u>MASS</u> of an object is not simply the <u>QUANTITY</u> of <u>MATTER</u> but is actually a measure of <u>INERTIA</u> of an object. What does this mean?
 - The <u>MORE MASS</u> an object has, the <u>MORE DIFFICULT</u> it becomes to <u>CHANGE</u> the <u>OBJECT'S</u> state of <u>MOTION</u>.

Example:

It is more difficult to budge a <u>PIANO</u> from rest than a <u>PIANO BENCH</u>. This is because the piano has much <u>MORE</u> mass than the bench does and there for much more <u>INERTIA</u>.

Newton's second law is often stated as

F = ma

Where:

F = Force, measured in <u>Newtons (N)</u> – 1N=1kg/m·s² m = <u>Mass</u>, measured in <u>Kilograms (Kg)</u> a = <u>Acceleration</u>, measured in <u>m/s²</u>

This law states that

<u>ACCELERATION</u> is <u>PROPORTIONAL</u> to the applied <u>FORCE</u>.

→If we apply a <u>GREATER</u> FORCE, there will be a <u>GREATER</u> <u>ACCELERATION</u> (either speeding up or slowing down).

> The more force... The more acceleration.

- To achieve <u>ACCELERATION</u>, the amount of applied <u>FORCE</u> is <u>RELATED</u> to the <u>MASS</u> of an object.
 - → The MORE MASSIVE an object becomes, the GREATER the FORCE NECESSARY to change its speed

 a <u>FORCE</u> is <u>CAPABLE</u> of <u>CHANGING</u> the <u>DIRECTION</u> of <u>MOTION</u> on an <u>OBJECT</u>.

> → If an unbalanced force is applied to an object, the object will <u>ACCELERATE</u> in the <u>DIRECTION</u> of the <u>UNBALANCED</u> FORCE.

Reminder:

- A force is any kind of **<u>PUSH</u>** or <u>**PULL**</u> on an object.
- **FORCE** is a **VECTOR** quantity.

Example Problems:

- 1. How fast will a 700kg car accelerate if a force of 400N is applied by stepping on the gas? $F = m \alpha$
- M = 700 KgF = 400 Na = ?400 N = (700 Kg)(a) $a = \frac{400 \text{ N}}{700 \text{ Kg}} = 0.57 \text{ m/s}^2$
- 2. You are driving along at 100km/hr, and a deer jumps out in front of you. If you slam on the breaks and stop in 5s, find the following:
- a. Your acceleration (in m/s²) $a = \frac{V_2 V_1}{\Delta t}$ $\frac{V_2 - V_1}{\Delta t} = -5.56 \text{ m/s}^2$
 - b. If your car has a mass of 900 kg, what force did your breaks have to apply to stop the car? F = MA

F=Ma $F = (900 \text{ kg})(-5.56 \text{ m/s}^2)$ F = (5004 N)

F=MA

Example Problems:

- Find the mass of an object that accelerates at a rate of 3m/s² when a force 3. of 1000N is applied.
- F= 1000N
- n= 3m/52

M=?

F=ma $1000N = m(3m/s^{2})$ m = 333.3 kg

Rocked

- Draw a diagram showing all the forces in the following situations: 4.
 - A skier goes down the hill. a.
 - A boat is moving at a constant speed. b.

A rocket is launched. С.

Try these ones...

- 1. You are pushing a stalled car. Describe how acceleration would change if:
 - a. Applied more force.

acceleration J

b. The car was heavier.

acceleration is

Calculate the force required to throw a football (1kg) with an acceleration of 2.5m/s²

$$F = M Q$$

= $(|kq)(2.5 m/5^2)$
= $2.5 N$

Try these ones...

3. Hayward and Kangas are having a tug-of-war. If Hayward can pull with a force of 1,000,000 N and Kangas can only pull with a force of 10 N, and Kangas has a mass of 60kg, how fast will Mr. Kangas accelerate?

$$F = ma$$

 $999 990N = 60 Kg(a)$
 $a = 16,666 m/5^{2}$