Newton's $2^{\text {nd }}$ Law

Outcome:
S2-3-06 Describe qualitatively how force is related to motion. Include: no force, constant force,

More on Forces

How is the applied FORCE RELATED to the subsequent MOTION of the object? Does the size of the force affect the motion?

Force is proportional to acceleration.

- If we apply a GREATER FORCE we will have a GREATER ACCELERATION (including speeding up and slowing down).

Force is proportional to mass.

- MORE MASSIVE OBJECTS require MORE FORCE to accelerate (change speed).

Force can change the direction of motion.

Newton's Second Law

Looks at the relationship between an object's MASS and its ACCELERATION.

- The MASS of an object is not simply the QUANTITY of MATTER but is actually a measure of INERTIA of an object. What does this mean?
- The MORE MASS an object has, the MORE DIFFICULT it becomes to CHANGE the OBJECT'S state of MOTION.

Example:

It is more difficult to budge a PIANO from rest than a PIANO BENCH. This is because the piano has much MORE mass than the bench does and there for much more INERTIA.

Newton's Second Law

Newton's second law is often stated as

$$
F=m a
$$

Where:

$$
\begin{aligned}
& F=\text { Force }, \text { measured in Newtons }(N)-1 N=1 \mathrm{~kg} / \mathrm{m} \cdot \mathrm{~s}^{2} \\
& m=\text { Mass, measured in Kilograms }(\mathrm{Kg}) \\
& a=\underline{\text { Acceleration, }, \text { measured in } \underline{m} / \mathrm{s}^{2}}
\end{aligned}
$$

This law states that

- ACCELERATION is PROPORTIONAL to the applied FORCE.
\rightarrow If we apply a GREATER FORCE, there will be a GREATER ACCELERATION (either speeding up or slowing down).

The more force... The more acceleration.

Newton's Second Law

- To achieve ACCELERATION, the amount of applied FORCE is RELATED to the MASS of an object.
\rightarrow The MORE MASSIVE an object becomes, the GREATER the FORCE NECESSARY to change its speed

Newton's Second Law

- a FORCE is CAPABLE of CHANGING the DIRECTION of MOTION on an OBJECT.
\rightarrow If an unbalanced force is applied to an object, the object will ACCELERATE in the DIRECTION of the UNBALANCED FORCE.

Reminder:

- A force is any kind of PUSH or PULL on an object.
- FORCE is a VECTOR quantity.

Newton's Second Law
Example Problems:

$$
\dot{r}=m a
$$

1. How fast will a 700 kg car accelerate if a force of 400 N is applied by stepping on the gas?

$$
\begin{aligned}
& m=700 \mathrm{~kg} \\
& F=400 \mathrm{~N} \\
& a=?
\end{aligned}
$$

$$
\begin{aligned}
F & =m a \\
400 \mathrm{~N} & =(700 \mathrm{~kg})(a) \\
a & =\frac{400 \mathrm{~N}}{700 \mathrm{~kg}}=0.57 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

2. You are driving along at $100 \mathrm{~km} / \mathrm{hr}$, and a deer jumps out in front of you. If you slam on the breaks and stop in 5 s , find the following:
a. Your acceleration (in $\mathrm{m} / \mathrm{s}^{2}$)

$$
\begin{aligned}
a & =\frac{V_{2}-V_{1}}{\Delta t} \\
& =\frac{0 \mathrm{~m} / \mathrm{s}-27.8 \mathrm{~m} / \mathrm{s}}{5 \mathrm{~s}}=-5.56 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

b. If your car has a mass of 900 kg , what force did your breaks have to apply to stop the car?

$$
\begin{aligned}
& F=m a \\
& F=(900 \mathrm{~kg})\left(-5.56 \mathrm{~m} / \mathrm{s}^{2}\right) \\
& F=(5004 \mathrm{~N})
\end{aligned}
$$

Newton's Second Law
Example Problems:
3. Find the mass of an object that accelerates at a rate of $3 \mathrm{~m} / \mathrm{s}^{2}$ when a force of 1000 N is applied.

$$
F=1000 \mathrm{~N}
$$

$$
N
$$

$$
a=3 \mathrm{~m} / \mathrm{s}^{2}
$$

$$
m=?
$$

$$
\begin{gathered}
F=m a \\
1000 N=m\left(3 \mathrm{~m} / \mathrm{s}^{2}\right) \\
m=333.3 \mathrm{~kg}
\end{gathered}
$$

4. Draw a diagram showing all the forces in the following situations:
a.

b. A boat is moving at a constant speed.

c. A rocket is launched.

Newton's Second Law

Try these ones...

1. You are pushing a stalled car. Describe how acceleration would change if:
a. Applied more force.

$$
\text { acceleration } \uparrow
$$

b. The car was heavier.

2. Calculate the force required to throw a football (1 kg) with an acceleration of $2.5 \mathrm{~m} / \mathrm{s}^{2}$

Newton's Second Law
Try these ones...
3. Hayward and Kangas are having a tug-of-war. If Hayward can pull with a force of 1,000,000 N and Kangas can only pull with a force of 10 N , and Kangas has a mass of 60 kg , how fast will Mr. Kangas accelerate?

$$
\begin{gathered}
\text { accelerate? } \\
\text { Kangus } \\
1,000,006 \mathrm{~N}-10 \mathrm{~N}=999,990 \mathrm{~N} \text { (unbalanced) } \\
99999 \mathrm{maN}=60 \mathrm{~kg}(\mathrm{a}) \\
a=16,666 \mathrm{~m} / \mathrm{s}^{2}
\end{gathered}
$$

