Moles \& Particles

Outcome:

Solve problems requiring inter-conversions between moles, mass, volume, and number of particles.

Moles \& Particles

 either be MOLECULES or ATOMS.

If we have the amount of particles (atoms/molecules) of a substance, we can use Avogadro's number to find how many moles we have.

Think of a mole as a "PACKAGE of SOMETHING", like a DOZEN.
We can use units to do our calculations, just as before...

$$
\begin{aligned}
& \text { mat } \times \frac{6.02 \times 10^{23} \text { particles }}{1 \text { mot }}=\text { particles } \\
& \text { particles } \times \frac{1 \text { mol }}{6.02 \times 10^{23} \text { particles }}=\text { mol }
\end{aligned}
$$

Moles \& Particles
Examples:
If we had 2 moles of pennies, how many would this be? How much money is this?

$$
\begin{aligned}
2 \text { mol } \times \frac{6.0210^{23}}{} \text { pennies } \\
1 \text { mol } \$ 1.2040000000000000000000200
\end{aligned}
$$

How many moles are there in 1.7×10^{18} atoms of copper?

$$
1.7 \times 10^{18} \text { atoms } \times \frac{1 \mathrm{~mol}}{6.02 \times 10^{23} \text { atoms }}=2.82 \times 10^{6} \mathrm{~mol}
$$

How many molecules are there in $7.0 \mathrm{~mol} \mathrm{O}_{2}$?

$$
7.0 \mathrm{~mol} \times \frac{6.02 \times 10^{23} \text { molecules }}{1 \text { mol }}=4.214 \times 10^{24} \text { molecules }
$$

Moles \& Particles
Try this one...
If you had one water molecule, how many moles of water would you have?

$$
1 \text { molecule } \times \frac{1 \mathrm{~mol}}{6.02 \times 10^{23} \text { molecule }}=1.66 \times 10^{-24} \mathrm{~mol}
$$

Moles \& Particles (atoms in a molecule)
If your PARTICLES are ATOMS, they CANNOT be broken down further \rightarrow an atom is the smallest part of an element.

Example:
How many atoms of hydrogen are there in 2 moles of hydrogen atoms?

$$
2 \mathrm{~mol} \times \frac{6.02 \times 10^{23} \text { atoms }}{1 \mathrm{~mol}}=1.2 \times 10^{24} \text { atoms H }
$$

Moles \& Particles (atoms in a molecule)
If our PARTICLES are MOLECULES, they CAN be broken down further into atoms

Examples:
How many atoms of hydrogen are there in 2 moles of hydrogen gas $\left(\mathrm{H}_{2}\right)$?

$$
2 \mathrm{~mol} \times \frac{6.02 \times 10^{23} \text { molecules }}{1 \text { mol }}=1.2 \times 10^{24} \text { molecules } \mathrm{H}_{2} \times \frac{2 \text { atoms } \mathrm{H}}{1 \text { molecule } \mathrm{H}_{2}}=2.4 \times 10^{24} \text { atoms } \mathrm{H}
$$

How many atoms of each element are in 2 moles of water

$$
\begin{aligned}
2 \text { mol } H_{2} \mathrm{O} \times \frac{6.62 \times 10^{23} \text { molecules }}{1 \text { mol }=1.2 \times 10^{24} \text { molecules } \mathrm{H}_{2} \mathrm{O} \times \frac{2 \text { atoms } \mathrm{H}}{1 \text { molecule }}}=\begin{array}{l}
2.4 \times 10^{24} \text { atoms } \mathrm{H} \\
\end{array} \begin{aligned}
1 \text { atom O } & 1 \text { molecule }
\end{aligned}=1.2 \times 10^{24} \text { atoms } \mathrm{O}
\end{aligned}
$$

Moles \& Particles (atoms in a molecule)
Try this one...
How many atoms of each element are there in 0.5 moles of $\mathrm{N}_{2} \mathrm{O}_{5}$?

$$
\begin{aligned}
& 0.5 \mathrm{~mol} \times \frac{6.02 \times 10^{23} \text { molecules }}{1 \mathrm{~mol}}=3.01 \times 10^{23} \text { molecules } \mathrm{N}_{2} \mathrm{O}_{5} \\
& 3.01 \times 10^{23} \text { molecules } \times \frac{2 \text { atoms } \mathrm{N}}{1 \text { molecules }}=6.02 \times 10^{23} \text { atoms } \mathrm{N} \\
& \times \frac{5 \text { atoms } \mathrm{O}}{1 \text { molecule }}=1.57 \times 10^{24} \text { atoms } \mathrm{O}
\end{aligned}
$$

$$
0.5 \text { mol Nos } \times \frac{2-N}{1 \text { cat }}=1 \text { molecule } N \times \frac{\text { NA atoms } N}{1 \text { mol }}=6.02 \times 10^{23}
$$

Moles \& Particles (atoms in a molecule)

We can also find the number of moles of atoms in a molecule using the same logic...

Example:

How many moles of each element are found in 0.5 moles of $\mathrm{N}_{2} \mathrm{O}_{5}$?

$$
\begin{gathered}
0.5 \mathrm{~mol} \mathrm{~N}_{2} \mathrm{O} 5 \times \frac{2-\operatorname{atomsN}}{1 \mathrm{~N}_{2} \mathrm{O}}=1 \mathrm{~mol} \mathrm{~N} \times \frac{\mathrm{Na}^{\text {atoms }}}{1 \mathrm{mot}}=6.02 \times 10^{33} \text { a tuons } \\
\times \frac{5-0^{15}}{1-\mathrm{N}_{2} 05}=2.5 \mathrm{~mol} 0
\end{gathered}
$$

Notice that we can now use Avogadro's number to find the number of atoms just like before....

Moles \& Particles (atoms in a molecule)
Try this one...
How many moles of each element are found in 0.2 moles of magnesium hydroxide?

$$
\begin{aligned}
\left.0.2 \mathrm{~mol} \mathrm{mg}_{\mathrm{g}} \mathrm{OH}\right)_{2} & \times \frac{1-\mathrm{my}^{1-m g\left(o H H_{2}\right.}}{}=0.2 \mathrm{~mol} \mathrm{mg} \\
& \times \frac{2-0^{15}}{1-\mathrm{mg}_{\mathrm{g}}(\mathrm{H})_{2}}
\end{aligned}=0.4 \mathrm{~mol} 0
$$

Moles \& Particles (atoms in a molecule)
We can also include our molar mass calculations from before...
Examples:

1. Determine the number of atoms of hydrogen that would be found in 36 g of water.

$$
36 \mathrm{~g} \times \frac{1 \mathrm{~mol}}{18.02 \mathrm{~g}}=2 \mathrm{~mol} \times \frac{N_{A} \text { molecules }}{1 \mathrm{~mol}}=1.2 \times 10^{24} \text { molecules } \times \frac{2 \text { atoms } H}{1 \text { molecule }}=2.41 \times 10^{24} \text { atoms }
$$

2. What would be the mass of 20 molecules of water?

$$
\begin{aligned}
& \text { would be the mass of } 20 \text { molecules of water? } \\
& 20 \text { molecules } \times \frac{\mid \text { mol }}{N_{A} \text { molecules }}=3.32 \times 10^{-23} \mathrm{~mol} \times \frac{18.02 \mathrm{~g}}{1 \mathrm{~mol}}=\square .99 \times 10^{-22} \mathrm{~g}
\end{aligned}
$$

Moles \& Particles (atoms in a molecule)
Examples (cont.):
3. What would be the mass of 1 atom of sodium?

$$
1 \text { atom } \times \frac{\mid \text { mol }}{N_{A} \text { modules }}=1.66 \times 10^{-24} \mathrm{~mol} \times \frac{23 \mathrm{~g}}{1 \mathrm{~mol}}=3.82 \times 10^{-23} \mathrm{~g}
$$

Try this one...
How many chlorine atoms are in 1.0 g of carbon tetrachloride? $\rightarrow 12+(3.5+4)$

$$
1.0 \mathrm{~g} \times \frac{1 \mathrm{mod}}{154 \mathrm{~g}} \times \frac{N_{A} \text { molemus }}{1 \text { mot }} \times \frac{4 \text { atoms } \mathrm{Cl}}{1 \text { molemetes }}=1.56 \times 10^{22} \text { a toms Cl }
$$

