Dilutions

Outcomes:

- Solve problems involving the dilution of solutions.
- Perform a dilution from a solution of known concentration.

Diluting a Solution:

Most solutions are stored in CONCENTRATED form. We need to DILUTE them to yield solutions of a desired concentration.

- When a solution is DILUTED, we are ONLY INCREASING the number of MOLES of SOLVENT. The MOLES of SOLUTE will NOT CHANGE during a DILUTION, only the CONCENTRATION will DECREASE.

Moles Before (initial) = Moles After (final)

Diluting a Solution:
Recall that:

$$
\begin{array}{r}
\quad \frac{m_{0} l}{k} \times k=\operatorname{mol} \\
\text { Moles }=\sum_{M} \times V \\
\text { moles }_{1}=\text { moles }_{2}
\end{array}
$$

Therefore:

$$
C_{1} V_{1}=C_{2} V_{2}
$$

$$
\begin{array}{lll}
M_{i} V_{i}=M_{f} V_{f} & \text { OR } & M_{1} V_{1}=M_{2} V_{2} \\
\left(2 \frac{2 \mu v}{L}\right)(1 L) & =\left(1 \frac{m v^{\circ}}{L}\right)(2 L)
\end{array}
$$

Where:

$$
\begin{aligned}
& \mathrm{M}_{\mathrm{i}}=\text { initial concentration } \\
& \mathrm{V}_{\mathrm{i}}=\text { initial volume } \\
& \mathrm{M}_{\mathrm{f}}=\text { final concentration } \\
& \mathrm{V}_{\mathrm{f}}=\text { final volume } \\
& \text { (total) }
\end{aligned}
$$

Dilution Problems:

1. What is the final concentration of a NaF solution made by diluting 100 mL of a 0.500 M solution to 4.00L?

$$
\begin{aligned}
M_{1} U_{1} & =M_{2} V_{2} \\
\left(0.5 \frac{\mathrm{~mol}^{1}}{\mathrm{~L}}\right)(0.1 L) & =m_{2}(4.00 \mathrm{~L}) \\
M_{2} & =\frac{\left(0.5 \frac{\mathrm{~mol}}{\mathrm{~L}}\right)(0.14)}{4.004} \\
M_{2} & =0.0155 \frac{\mathrm{~mol}^{2}}{\mathrm{~L}}
\end{aligned}
$$

2. To what final volume must 10.0 mL of $6.0 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ be diluted to give 0.020 M solution? How much solvent was added for this dilution?

$$
\begin{aligned}
m_{1} V_{1} & =m_{2} V_{2} \\
\left(6.0 \frac{\mathrm{~mol}}{\mathrm{~L}}\right)(0.01 \mathrm{~L}) & =\left(0.02 \frac{\mathrm{~mol}}{\mathrm{~L}}\right) V_{2} \\
V_{2} & =\frac{\left(6.0 \frac{\mathrm{~mol} 1}{\mathrm{c}}\right)(0.01 \mathrm{~L})}{\left(0.02 \frac{\mathrm{mg} \mathrm{l}}{\mathrm{~L}}\right)}=3.0 \mathrm{~L}
\end{aligned}
$$

$$
3.0 L-0.01 L=2.99 L
$$

OR

Dilution Problems:
M,

3. What volume of $0.500 \mathrm{M} \mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ is needed to yield 600 mL of a 0.400 N - solution?

$$
\begin{aligned}
M N_{1} V_{1} & =M_{2} V_{2} \\
\left(0.5 \frac{\mathrm{~mol}}{\mathrm{~L}}\right) U_{1} & =\left(0.4 \frac{\mathrm{mil}}{\mathrm{c}}\right)(0.6 \mathrm{~L}) \\
V_{1} & =\frac{\left(0.4 \frac{\mathrm{mbl}}{\mathrm{~F}}\right)(0.6 \mathrm{~L})}{0.5 \frac{\mathrm{mot}}{\mathrm{~L}}} \\
V_{1} & =0.48 \mathrm{~L}
\end{aligned}
$$

Mixing Solutions:

Mixing Two Similar Solutions:

- If we mix two solutions together, the MOLES of SOLUTE will be ADDITIVE!
- i.e. if you had $\mathbf{3}$ MOLES of salt in ONE BEAKER, and $\underline{\mathbf{2}}$ in ANOTHER, after MIXING you would have 5 MOLES of salt.

So therefore:

$$
\begin{gathered}
\left(\frac{m_{0}}{L} y_{L}\right) \quad\left(\frac{m_{0}}{c}\right)(L)=\left(\frac{m_{0}}{L}\right)(L) \\
\text { Moles }_{2}+\text { Moles }_{2}=\text { Moles }_{\text {final }} \\
O R \\
M_{1} V_{1}+M_{2} V_{2}=M_{f} V_{f}
\end{gathered}
$$

Mixing Solutions:
Example:
 $\sqrt{2} \quad m_{2}$
What is the final concentration when 200 mL of $0.500 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ and 300 mL of $6.00 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ are mixed?

$$
\begin{aligned}
& M_{1} V_{1}+M_{2} V_{2}=M_{f} V_{f} \\
& \left(0.5 \frac{\mathrm{~mol}_{\mathrm{L}}}{\mathrm{~L}}\right)(0.2 \mathrm{~L})+\left(6.00 \frac{\mathrm{~mol}}{\mathrm{~L}}\right)(0.3 \mathrm{~L})=M_{f}(0.5 \mathrm{~L}) \\
& M_{f}=\frac{\left.\left(0.5 \frac{\mathrm{~mol}}{4}\right)(0.34)+\left(6.00 \frac{\mathrm{~mol}}{4}\right)(0.3 \mathrm{~L})\right]}{(0.5 \mathrm{~L})} \\
& M_{f}=3.8 \frac{\mathrm{~mol}}{\mathrm{~L}}
\end{aligned}
$$

Dilutions \& Mixing Solutions:
Try these ones...
What is the final concentration when 3.5 L of 2.6 M HCl and 750 mL of 2.5 M HCl are mixed?

$$
\begin{gathered}
m_{1} V_{1}+m_{2} V_{2}=m_{f} V_{f} \\
\left(2.6 \frac{\mathrm{~mol}}{\mathrm{~L}}\right)(3.5 \mathrm{c})+\left(2.5 \frac{\mathrm{~mol}}{\mathrm{c}}\right)(0.75 \mathrm{~L})=m_{f}(4.25 \mathrm{~L}) \\
m_{f}=\frac{\left.\left(2.6 \frac{\mathrm{~mol}}{\mathrm{c}}\right)(3.5 \mathrm{~L})+\left(2.5 \frac{\mathrm{~mol}}{\mathrm{c}}\right)(0.75 \mathrm{c})\right]}{4.25 \mathrm{~L}} \\
m_{f}=2.58 \frac{\mathrm{mbl}}{\mathrm{~L}}
\end{gathered}
$$

Dilutions \& Mixing Solutions:
Try these ones...
Calculate the amount of water that must be added to 175 mL of a $0.0140 \mathrm{~mol} / \mathrm{L}$ solution of sodium chloride to yield a final concentration of $0.01 \mathrm{~mol} / \mathrm{L}$.

$$
0.074 \times \frac{1000 \mathrm{~mL}}{1 \mathrm{~L}}
$$

$$
\begin{gathered}
M_{1} V_{1}=M_{2} V_{2} \\
\left(0.0140 \frac{\mathrm{~mol}}{\mathrm{~L}}\right)(0.175 \mathrm{~L})=\left(0.01 \frac{\mathrm{~mol}}{\mathrm{~L}}\right) V_{2} \\
V_{2}=\frac{(0.014 \mathrm{~mol})(0.175 \mathrm{~L})}{(0.01 \mathrm{mot})} \\
V_{2}=0.245 \mathrm{~L}-0.175 \mathrm{~L}=0.07 \mathrm{~L} \\
\end{gathered}
$$

