
Solubility Equilibrium

Outcomes:

- Write solubility product expressions (Ksp) from balanced equations for salts with low solubility.
- Solve problems involving Ksp

Solution Equilibrium...

When a solution is <u>SATURATED</u>, there is an <u>EQUILIBRIUM</u> between the <u>DISSOLVED</u> <u>SOLUTE</u> and <u>SOLID</u> <u>SOLUTE</u> particles.

Ex)
$$NaCl_{(s)} \leftarrow \rightarrow Na^{+}_{(aq)} + Cl^{-}_{(aq)}$$

This is a **DYNAMIC EQUILIBRIUM** since the **RATE** of dissolving = **RATE** of crystallization.

The Solubility Product (K_{sp}):

- Some substances that were thought to be <u>INSOLUBLE</u> in water, were later found to be <u>SLIGHTLY</u> soluble.
- These substances will form a <u>SATURATED</u> solution quickly and develop a solution <u>EQUILIBRIUM</u>

Solubility Constant (Ksp)

Example:

$$\underline{AgCl_{(s)}} \longleftrightarrow \underline{Ag^+_{(aq)}} + \underline{Cl^-_{(aq)}}$$

The **EQUILIBRIUM** LAW would be:

$$K_{eq} = \frac{[Ag^+][Cl^-]}{[AgCl]}$$

The amount of **AgCI** is **CONSTANT** (a **SOLID**), so...

$$K_{eq} = [Ag^+][Cl^-]$$

We can replace the constants with a new constant $\underline{K_{sp}}$, the <u>SOLUBILITY PRODUCT CONSTANT</u>.

$$K_{sp} = [Ag^+][Cl^-]$$

Solubility Constant (Ksp)

In general, for any ionic compound dissolving:

$$A_a B_{b(s)} \leftarrow \rightarrow a A^+_{(aq)} + b B^-_{(aq)}$$

The **SOLUBILITY PRODUCT** is:

$$K_{sp} = [A^+]^a [B^-]^b$$

Notes on K_{sp}:

- Is <u>TEMPERATURE</u> dependent (<u>25</u>°C is the normal K_{sp}).
- Applies only in a <u>SATURATED</u> solution at <u>EQUILIBRIUM</u>.

Ksp Examples:

1. Write the dissociation equation and $K_{\rm sp}$ expression for calcium phosphate.

2. At equilibrium, the concentration of calcium ions and phosphate ions are 1.3×10^{-5} M, calculate K_{sp} .

Solubility:

• **SOLUBILITY** and **SOLUBILITY PRODUCT** are two **DIFFERENT** things.

SOLUBILITY is the MAXIMUM AMOUNT of SOLUTE that can dissolve in a certain amount of SOLVENT.

SOLUBILITY PRODUCT is an EQUILIBRIUM CONSTANT.

If we know the solubility (mol/L or g/L) of a substance, we can find K_{sp} (and vice versa)

Solubility & Ksp Examples:

1. The solubility of PbF₂ is 0.466g/L. Find the Ksp.

2. The solubility of BaSO₄ is 9.09×10^{-4} g per 100mL of solution Calculate the Ksp of BaSO₄.

Solubility & Ksp Examples:

3. Find the solubility of magnesium hydroxide in g/L if Ksp = 8.9×10^{-12}

Try these ones:

1. If the solubility of lead(II) chloride is 4x10⁻⁵ g/100ml, calculate Ksp.

Try these ones:

Calculate the solubility of silver chromate in mol/L and in g/L if its Ksp = 1.5×10^{-12} .