Acids & Bases

Outcome:

S2-2-08 Experiment to classify acids and bases using their characteristic properties. *Include: pH, indicators, reactivity with metals.*

What the heck are acids & bases?

- <u>ACIDS</u> and <u>BASES</u> are two groups of compounds that have their own <u>CHARACTERISTIC</u> FORMULAS and <u>CHEMICAL</u> PROPERTIES, especially when they are <u>DISSOLVED</u> in <u>WATER</u>.
- Acids and bases will normally be <u>DISSOLVED</u> in <u>WATER</u>, and therefore have the (aq) subscript after their formula indicating an <u>AQUEOUS</u>
 <u>SOLUTION</u>.
- Substances that are acidic or basic usually contain either <u>HYDROGEN</u> <u>IONS</u> (H⁺) or <u>HYDROXIDE IONS (OH⁻)</u>
- How acidic or basic a substance is can be measured using the <u>pH</u> <u>SCALE</u> – more on this later...

Definition of Acids and Bases:

All substances will fall into one of three categories:

- 1. <u>ACID</u>
- 2. <u>BASE</u>
- 3. <u>NEUTRAL</u> (neither)

Chemists have come up with many ways of classifying substances into these categories. We will use the simplest definition...

<u>Acids</u>

- Are <u>IONIC</u> compounds that contain <u>HYDROGEN</u> <u>IONS</u> (<u>H</u>⁺), or release <u>HYDROGEN</u> <u>IONS</u> in water.
- The <u>HYDROGEN</u> ions are what give acids their distinct <u>PROPERTIES</u>.

Bases

- Are ionic compounds that contain <u>HYDROXIDE</u> IONS (OH⁻), or release <u>HYDROXIDE</u> IONS in water.
- The <u>HYDROXIDE</u> ions are what give bases their distinct <u>PROPERTIES</u>.

Properties of Acids:

Acids typically have the following properties:

1. <u>CONTAIN HYDROGEN IONS (H⁺)</u>

- When acids are dissolved in water they **RELEASE H+ IONS**.
- These ions are what give acids their properties
 ex) HCI → H⁺ + CI⁻

2. <u>CONDUCT ELECTRICITY</u>

• Since there are ions (charges), acids can carry electricity

Properties of acids:

- 3. <u>SOUR TASTE</u>
 - Think of <u>CITRUS JUICES</u> (orange or grapefruit), they all contain <u>CITRIC</u> <u>ACID</u>.
 - **SOUR** candies are also coated in **CITRIC ACID**

4. <u>CORROSIVE</u>

- Will <u>**REACT**</u> with most <u>**METALS**</u>
- <u>BURN</u> the <u>SKIN</u> like battery acid or bee stings

Properties of Bases:

Bases:

Bases typically have the following properties:

1. CONTAIN HYDROXIDE IONS (OH-)

- When Bases are dissolved in water they **<u>RELEASE OH- IONS</u>**.
- These ions are what give basess their properties
 ex) NaOH → Na⁺ + OH⁻

2. <u>CONDUCT ELECTRICITY</u>

• Since there are ions (charges), bases can also carry electricity

3. <u>BITTER TASTE</u>

Think of SOAPS, BAKING SODA

Properties of bases:

- 4. <u>FEEL SLIPPERY</u>
 - Think of **SOAPS**, which are made by reacting a base with fats.

5. CAUSTIC

- Reacts with <u>LIVING TISSUE</u> to <u>BREAK</u> it down.
- Used in <u>DRAIN</u> cleaners and <u>PAPERMAKING</u>.

Some Common Acids:

Formula	Name	Found In
H ₂ SO _{4(aq)}	Sulfuric Acid	Car batteries
HCl _(aq)	Hydrochloric Acid	Stomach acid
H ₂ CO _{3(aq)}	Carbonic Acid	Soft drinks
$H_3PO_{4(aq)}$	Phosphoric Acid	Soft drinks
HNO _{3(aq)}	Nitric Acid	Explosives
$HC_2H_3O_{2(aq)}$	Acetic Acid	Vinegar
HC ₆ H ₇ O _{7(aq)}	Citric Acid	Oranges, lemons
$HC_3H_5O_{3(aq)}$	Lactic Acid	Sour milk, muscle fatigue
HC ₉ H ₇ O _{4(aq)}	Acetylsalicylic Acid	Aspirin

Some Common Bases:

Formula	Name	Found In
NaOH(aq)	Sodium hydroxide	Drain cleaner
KOH(aq)	Potassium hydroxide	Soap, cosmetics
Al(OH) ₃ (aq)	Aluminum hydroxide	Antacids
NH ₄ OH(aq)	Ammonium Hydroxide	Ammonia, windex

There are different ways to test how acidic or basic (alkaline) a substance is...

pH – "The Power of Hydrogen"

 A scale that goes from <u>0 – 14</u> that tells us how <u>ACIDIC</u> or <u>BASIC</u> (<u>ALKALINE</u>) a substance is:

pH – "The Power of Hydrogen"

 неге are some examples of everyday substances and their <u>APPROXIMATE</u> pH:

pH – "The Power of Hydrogen"

- Every <u>UNIT</u> of pH represents a difference of a <u>FACTOR OF 10</u>, for example:
 - <u>VINEGAR</u> (pH ≈ <u>3</u>) is <u>TEN</u> times more <u>ACIDIC</u> than <u>ORANGE</u> <u>JUICE</u> (pH ≈ <u>4</u>)
 - BATTERY ACID (pH ≈ 2) is 10X more ACIDIC than VINEGAR (pH ≈ 3) and 100X more ACIDIC than ORANGE JUICE (pH ≈ 4)
- pH can be measured using a <u>pH METER</u> or certain <u>INDICATORS</u>.

Indicators

- Indicators are substances that change <u>COLOUR</u> when in the presence of an <u>ACID</u> or a <u>BASE</u>.
- Some common indicators are listed in the table below:

Indicator	Acid Colour	Base Colour
Litmus	Red	Blue
Phenolphthalein (feeno-	Colourless	Pink
thay-leen)		
Methyl orange	Orange	Yellow
Bromothymol blue	Light yellow	Blue
Red Cabbage Juice	Pink	Blue

 A bunch of indicators can be <u>MIXED</u> together to make <u>UNIVERSAL</u> <u>INDICATOR</u>, which will change different <u>COLOURS</u> at a <u>RANGE</u> of different <u>pH VALUES</u>.

Litmus paper

- Paper that has been <u>SOAKED</u> in <u>LITMUS</u> indicator.
- Cannot tell you a <u>pH</u> <u>VALUE</u>, but will tell you if a solution is <u>ACIDIC</u> or <u>BASIC</u>.
- Comes in two colours <u>BLUE</u> and <u>RED</u>.
 - <u>BLUE</u> litmus turns <u>RED</u> in <u>ACID</u>
 - <u>RED</u> litmus turns <u>BLUE</u> in <u>BASE</u>

pH paper

- Paper that has been <u>SOAKED</u> in <u>UNIVERSAL INDICATOR</u>.
- You can <u>DIP</u> the paper in the <u>SOLUTION</u> and compare the resulting <u>COLOUR</u> with the <u>CHART</u> on the <u>CONTAINER</u> to get an <u>APPROXIMATE pH</u>

