Dissociation Constants...

$$
\begin{aligned}
& H A \rightleftharpoons H^{+}+A^{-} \\
& \Rightarrow\left(H^{-}\right]=\frac{\left[H^{+}\right]\left[A^{-}\right]}{[H A]} \\
& \underset{\text { acid dissociation }}{\text { constant }}
\end{aligned}
$$

Outcomes:
Write the equilibrium expression (K_{a} or K_{b}) from a balanced chemical Use K_{a} or K_{b} to solve problems for pH , percent dissociation, and concentration

Acid Dissociation Constant:

- STRONG acids DISSOCIATE COMPLETELY, so they do NOT reach an EQUILIBRIUM.
- WEAK acids WILL, however, establish an EQUILIBRIUM.
- We can write an EQUILIBRIUM LAW:

In general, for the weak acid $\underline{\text { HA: }}$

$$
\mathrm{HA}+\mathrm{H}_{2} \mathrm{O} \longleftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{A}^{-}
$$

The equilibrium law would be:

$$
K_{c}=\frac{\left[H_{3} O^{+}\right]\left[A^{-}\right]}{[H A][H) Q]}
$$

Water is a LIQUID, so it does NOT appear in equilibrium LAW, so we remove $\mathrm{H}_{2} \mathrm{O}$ and replace $\underline{K}_{\underline{c}}$ with \boldsymbol{K}_{a} - the acid dissociation (ionization) constant:

$$
K_{a}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{A}^{-}\right]}{[H A]}
$$

Notes on K_{a} :

- K_{q} reflects the equilibrium for an acid in solution.
- The Larger the K_{a}, the more product, so the stronger the acid, the smaller the K_{a}, the weaker the acid.

Acid Dissociation Constant:

Example:

HCl dissociates completely according to the equation:

$$
\begin{array}{rl}
\mathrm{HCl}_{(g)}+\mathrm{H}_{2} \mathrm{O}_{(l)} & \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}{ }_{(a q)}+\mathrm{Cl}_{(a q)} \\
\mathrm{DC} & 1.0
\end{array}
$$

If 1.0M HCl dissolves, then $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{Cl}^{-}\right]=1.0 \mathrm{M}$ (complete dissociation)

$$
\begin{aligned}
& K_{a}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{Cl}^{-}\right]}{[\mathrm{HCl}]} \\
& K_{a}=\frac{[1.0][1.0]}{[0]}
\end{aligned}
$$

$$
K_{a}=\text { very large, so HCl is a strong acid. }
$$

Base Dissociation Constant:

Same idea as $\underline{K}_{\mathbf{a}}$. AK K Al Malinearth

- STRONG bases dissociate COMPLETELY, so they do NOT reach an EQUILIBRIUM.
- WEAK bases WILL, however, establish an EQUILIBRIUM.
- The HIGHER the K_{b}, the STRONGER the base.

In general, for some weak base B :

$$
\mathrm{B}+\mathrm{H}_{2} \mathrm{O} \longleftrightarrow \mathrm{BH}^{+}+\mathrm{OH}^{-}
$$

The equilibrium law would be:

$$
K_{b}=\frac{\left[B H^{+}\right]\left[\mathrm{OH}^{-}\right]}{[B]}
$$

Base Dissociation Constant:

In general, for the weak base BOH :

$$
\mathrm{BOH} \longleftrightarrow \mathrm{~B}^{+}+\mathrm{OH}^{-}
$$

The equilibrium law would be:

$$
K_{b}=\frac{\left[\mathrm{B}^{+}\right]\left[\mathrm{OH}^{-}\right]}{[\mathrm{BOH}]}
$$

Example:

For the weak base NH_{3} :

$$
\mathrm{NH}_{3(g)}+\mathrm{H}_{2} \mathrm{O}_{(l)} \longleftrightarrow \mathrm{NH}_{4}^{+}{ }_{(q q)}+\mathrm{OH}_{(\text {(qq) }}^{-}
$$

The equilibrium law is:

$$
K_{b}=\frac{\left[\mathrm{NH}_{4}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{NH}_{3}\right]}
$$

The K_{b} for ammonia at $25^{\circ} \mathrm{C}$ is 1.8×10^{-5}.

Ka/Kb Problem Types:

1. Calculating $K_{a} / K_{\underline{b}}$

A 0.75M solution of Carbonic Acid dissociates partially. If at equilibrium, the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1.7 \times 10^{-3} \mathrm{M}$, find K_{a}.

$$
\begin{aligned}
& \begin{array}{c}
\mathrm{H}_{2} \mathrm{CO}_{3}+\mathrm{H}_{2} \mathrm{O}_{19} \rightleftharpoons \mathrm{HCO}_{3}^{-}+\mathrm{H}_{3} \mathrm{O}^{+} \\
0
\end{array} \\
& +1.7 \times 10^{-3}+1.7 \times 10^{-3} \\
& C-1.7 \times 10^{-3} \\
& \text { E } 0.7483 \\
& \mathrm{Ka}_{\mathrm{a}}=\frac{\left[\mathrm{HCO}_{3}^{-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]} \\
& =\frac{\left(1.7 \times 10^{-3}\right)^{2}}{0.7483} \\
& k_{a}=3.86 \times 10^{-6}
\end{aligned}
$$

Ka/Kb Problem Types:
2. Finding Concentrations of Species:
a) For a ftrongAcid/Base:

Find the concentration of all species in a 0.50 M HCl solution.

$$
\begin{aligned}
& \mathrm{HCl} \longrightarrow \mathrm{H}^{+}+\mathrm{Cl}^{-} \\
& 0.5 \frac{\mathrm{~mol}}{\mathrm{~L}} \longrightarrow 0.5 \frac{\mathrm{~mol}}{\mathrm{~L}}
\end{aligned}
$$

Ka/Kb Problem Types:
2. Finding Concentrations of Species:
b) For a Weak Acid/Base:

Find the concentration of all species in a 0.75 M solution of Acetic $\operatorname{acid}\left(K_{a}=1.8 \times 10^{-5}\right)$.

$$
\begin{aligned}
& \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \underset{0}{\rightleftharpoons} \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-} \\
& 0.75 \frac{\mathrm{~mol}}{\mathrm{~L}} \\
& -x \\
& 0.75-x \\
& K_{u}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}\right]}{\left[\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right]} \\
& 1.8 \times 10^{-5}=\frac{(x)^{2}}{(0.75-x)} \text { assume small } \\
& -\sqrt{\left(1.8 \times 10^{-5}\right)(0.75)} \sqrt{x^{2}} \\
& x=0.0037 \frac{\mathrm{~mol}}{\mathrm{~L}}=\left[\mathrm{H}_{3} \mathrm{O}^{\circ}\right] \\
& =\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{4}^{-}\right] \\
& 1.8 \times 10^{-5}=\frac{x^{2}}{0.75} \\
& {\left[\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right]=0.75-x} \\
& =0.746 \frac{\mathrm{~mol}}{\mathrm{~L}}
\end{aligned}
$$

Ka/Kb Problem Types:
3. Percent Ionization:

Calculate the percent ionization of a 0.0800 M solution of hydrocyanic acid if 0.002 M has ionized.

$$
\begin{aligned}
\%_{0} \text { diss. } & =\frac{\text { anut.ionized }}{\text { Total }} \times 100 \\
& =\frac{0.002 \frac{\mathrm{~mol}}{\mathrm{~L}}}{0.08 \frac{\mathrm{~mol}}{\mathrm{~L}}} \times 100 \\
& =2.5 \%
\end{aligned}
$$

Ka/Kb Problem Types:
4. Finding $K_{a} / K_{\underline{b}}$ With Percent Dissociation:

Find K_{a} of HNO_{2} if a 1.0 M solution dissociates 2.26%.

$$
\begin{aligned}
& \underset{0}{\mathrm{HNO}_{2}}+\mathrm{H}_{2} \mathrm{O} \underset{0}{\rightleftharpoons} \mathrm{HzO}_{3}^{+}+\mathrm{NO}_{2}^{-} \\
& 1.0 \mathrm{~mol} \\
& -0.0226 \\
& 0.9774 \\
& \text { X } \\
& +0.0226+0.0226 \\
& 0.0226 \\
& 0.0228 \\
& 1.0 \frac{\mathrm{~mol}}{\mathrm{~L}} \times \frac{2.26 \%}{100}=0.0226 \frac{\mathrm{~mol}}{\mathrm{~L}} \\
& \mathrm{Ka}_{a}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{NO}_{2}^{-}\right]}{\left[\mathrm{ANO}_{2}\right]} \\
& =\frac{(0.0226)^{2}}{0.9774} \\
& K_{a}=5.2 \times 10^{-4}
\end{aligned}
$$

Try these ones:

1. Calculating $\mathrm{Ka} / \mathrm{Kb}$:

A 1.0 M solution of Acetic acid is only partially ionized. If at equilibrium, the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1.3 \times 10^{-3} \mathrm{M}$, find K_{a}.

$$
\begin{aligned}
& K_{a}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}\right]}{\left[\mathrm{HC}_{2} \mathrm{~N}_{3} \mathrm{O}_{2}\right]} \\
& =\frac{\left(1.3 \times 10^{-3}\right)\left(1.3 \times 10^{-3}\right)}{0.9987} \\
& K_{u}=1.69 \times 10^{-6}
\end{aligned}
$$

Try these ones:

2. Calculating Concentration of Dissociated Species:

 HA is a weak acid with $\mathrm{K}_{\mathrm{a}}=7.3 \times 10^{-8}$. What is the concentration of all species ($\mathrm{HA}, \mathrm{H}_{3} \mathrm{O}^{+}$, and A^{-}) if the initial $[\mathrm{HA}]=0.50 \mathrm{M} ?\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{A}^{-}\right]=1.9 \times 10^{\circ}$$$
[H A]=0.5 \frac{\mathrm{~mol}}{\mathrm{c}}
$$

Try these ones:

3. Percent lonization/Dissociation:

We can describe acids and bases in terms of the degree that they dissociate.

$$
\text { Percent dissociation }=\frac{\text { concentration of dissociated species }}{\text { original concentration of acid or base }} \times 100 \%
$$

Calculate percent dissociation of a 0.100 M solution of formic acid $\left(\mathrm{HCH}_{2} \mathrm{O}_{2}\right)$ if the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=4.21 \times 10^{-3} \mathrm{M}$.
4.21%

Try these ones:
4. Finding K_{a} or $\mathrm{K}_{\underline{b}}$ given percent dissociation:

Find K_{b}) of the $\mathrm{HPO}_{4}{ }^{2-}$ ion if a 0.25 M solution dissociates 0.080%

$$
\mathrm{HPO}_{4}{ }^{2 \cdot}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{2} \mathrm{PO}_{7}{ }^{1}+\mathrm{OH}^{-} \quad 1.6 \times 10^{-7}
$$

