
Dissociation Constants...

Outcomes:

- Write the equilibrium expression (K_a or K_b) from a balanced chemical equation.
- Use K_a or K_b to solve problems for pH, percent dissociation, and concentration.

Acid Dissociation Constant:

- <u>STRONG</u> acids <u>DISSOCIATE</u> <u>COMPLETELY</u>, so they do <u>NOT</u> reach an <u>EQUILIBRIUM</u>.
- WEAK acids WILL, however, establish an EQUILIBRIUM.
- We can write an **EQUILIBRIUM LAW**:

In general, for the weak acid **<u>HA</u>**:

$$HA + H_2O \leftrightarrow H_3O^+ + A^-$$

The equilibrium law would be:

$$K_c = \frac{[H_3O^+][A^-]}{[HA][H_2Q]}$$

Water is a **LIQUID**, so it does **<u>NOT</u>** appear in equilibrium <u>**LAW**</u>, so we remove H_2O and replace <u> K_c </u> with K_a - the *acid dissociation (ionization) constant:*

$$K_a = \frac{[H_3O^+][A^-]}{[HA]}$$

Notes on K_a:

- *K_a* reflects the equilibrium for an acid in solution.
- The Larger the K_a, the more product, so the stronger the acid, the smaller the K_a, the weaker the acid.

Acid Dissociation Constant:

Example:

HCl dissociates completely according to the equation:

$$HCI_{(g)} + H_2O_{(l)} \rightarrow H_3O^+_{(aq)} + CI^-_{(aq)}$$

If 1.0M HCl dissolves, then $[H_3O^+] = [CI^-] = 1.0M$ (complete dissociation)

$$K_{a} = \frac{[H_{3}O^{+}][Cl^{-}]}{[HCl]}$$
$$K_{a} = \frac{[1.0][1.0]}{[0]}$$

 K_a = very large, so HCl is a strong acid.

Base Dissociation Constant:

Same idea as \underline{K}_a . Alkalized the

- <u>STRONG</u> bases dissociate <u>COMPLETELY</u>, so they do <u>NOT</u> reach an <u>EQUILIBRIUM</u>.
- WEAK bases WILL, however, establish an EQUILIBRIUM.
- The <u>HIGHER</u> the K_b, the <u>STRONGER</u> the base.

In general, for some weak base B:

$$B + H_2O \leftrightarrow BH^+ + OH^-$$

NuoH Al (OA) 3

The equilibrium law would be:

$$K_b = \frac{[BH^+][OH^-]}{[B]}$$

Base Dissociation Constant:

In general, for the weak base BOH:

 $BOH \leftrightarrow B^+ + OH^-$

The equilibrium law would be:

$$K_b = \frac{[B^+][OH^-]}{[BOH]}$$

Example:

For the weak base NH_3 : $NH_{3(g)} + H_2O_{(I)} \leftarrow \rightarrow NH_4^+_{(aq)} + OH^-_{(aq)}$

The equilibrium law is:

$$K_{b} = \frac{[NH_{4}^{+}][OH^{-}]}{[NH_{3}]}$$

The K_b for ammonia at 25°C is 1.8 x 10⁻⁵.

1. Calculating K_a/K_b

A 0.75M solution of Carbonic Acid dissociates partially. If at equilibrium, the $[H_3O^+] = 1.7 \times 10^{-3}M$, find K_a .

$$H_{2}CO_{3} + H_{2}O_{4}R + H_{2}O_{5} + H_{3}O^{2}$$

$$I = 0.75 \frac{mel}{2} + 1.7 \times 10^{3} + 1.7 \times 10^{3}$$

$$E = 0.7483 + 1.7 \times 10^{3} + 1.7 \times 10^{3}$$

$$I.7 \times 10^{3} + 1.7 \times 10^{3}$$

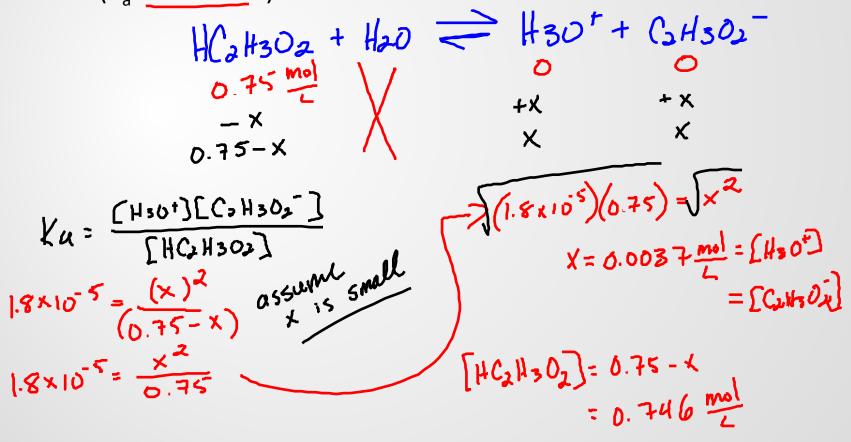
$$I.7 \times 10^{3} + 1.7 \times 10^{3}$$

$$I.7 \times 10^{3}$$

EQ

2. Finding Concentrations of Species:

a) For a Strong Acid/Base:


Find the concentration of all species in a 0.50M HCl solution.

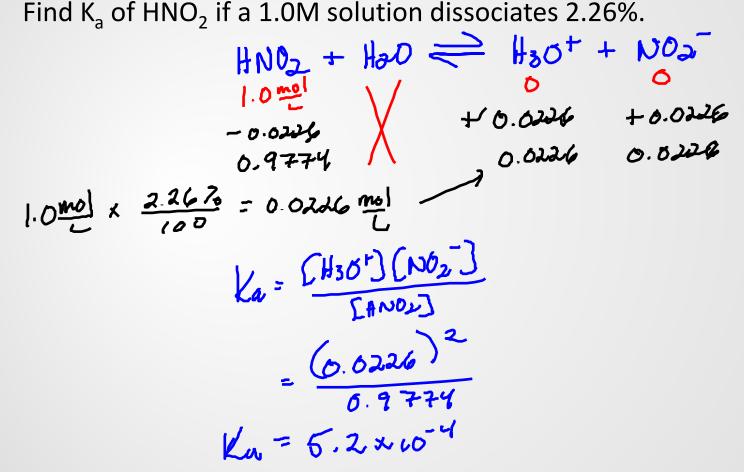
HCI -> H+ + CV-General -> 0.5 mol 0.5 mol

- 2. Finding Concentrations of Species:
- b) For a Weak Acid/Base:

Find the concentration of all species in a 0.75M solution of <u>Acetic</u> acid ($K_a = 1.8 \times 10^{-5}$).

Weak TCE

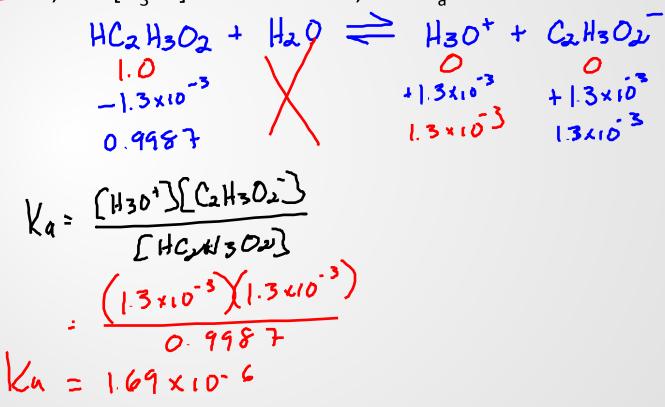
3. Percent Ionization:


Calculate the percent ionization of a 0.0800 M solution of hydrocyanic acid if 0.002M has ionized.

$$70 diss. = \frac{amt. ion: zed}{Total} \times 100$$

= $\frac{0.002 \text{ mol}}{0.08 \text{ mol}} \times 100$

10


4. Finding K_a/K_b With Percent Dissociation:

Find K_a of HNO₂ if a 1.0M solution dissociates 2.26%.

1. Calculating Ka/Kb:

A 1.0 M solution of Acetic acid is only partially ionized. If at equilibrium, the $[H_3O^+] = 1.3 \times 10^{-3} \text{ M}$, find K_a .

2. Calculating Concentration of Dissociated Species:

HA is a weak acid with $K_a = 7.3 \times 10^{-8}$. What is the concentration of all species (HA, H₃O⁺, and A⁻) if the initial [HA] = 0.50 M? [H₃O⁺]=[A⁻]=[9x(O⁺)] = [A⁻]= 19x(O⁺)] = 0.50 M?

3. Percent Ionization/Dissociation:

We can describe acids and bases in terms of the degree that they dissociate.

Percent dissociation = $\frac{\text{concentration of dissociated species}}{\text{original concentration of acid or base}} \times 100\%$

Calculate percent dissociation of a 0.100M solution of formic acid (HCH_2O_2) if the $[H_3O^+] = 4.21 \times 10^{-3}$ M.

4. Finding K_a or K_b given percent dissociation:

Find (K_b) of the HPO₄²⁻ ion if a 0.25 M solution dissociates 0.080%

HPOy2 + HaU = Haloz + OH-