Balancing Redox Reactions

tcomes:

1-11 Balance redox reactions. Include acidic \& basic solutions.

Balancing Redox Reactions:

Balance the following reaction like you would in grade $11 .$.

Remember that all redox reactions consist of a GAIN and LOSS of ELECTRONS. The AMOUNT of electrons LOST must EQUAL the amount of electrons GAINED.

- Are they equal?

The Half-Reaction Method:

We can separate the entire equation into two HALF REACTIONS, balance the ELECTRONS lost and gained, then put the new COEFFICIENTS into the original equation.

Half-Reactions:

- Show the OXIDATION or the REDUCTION REACTION.
- An OXIDATION HALF REACTION will PRODUCE electrons (LEO)
- A REDUCTION HALF REACTION will CONSUME electrons (GER)

Example:
For the reaction:

The oxidation half reaction is:

$$
\text { LEO } \quad \mathrm{Cu} \rightarrow \mathrm{Cu}^{2+}+2 e \quad \times 1
$$

The reduction half reaction is:

$$
\text { GEM } 2 \mathbf{A g}^{+}+12-2 \boldsymbol{A g} \times 2
$$

Example: Balance the equation $\mathrm{Sn}+\mathrm{HNO}_{3} \rightarrow \mathrm{SnO}_{2}+\mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O}$

Step 1: Assign oxidation numbers to each element to identify which is oxidized and which is reduced.

Step 2: Write the half reactions, balance elements, then add electrons to balance the charges. Multiply each reaction by the lowest whole number so the electrons lost equal electrons gained.

Step.4: Transfer the coefficients into the original reaction.

$$
\left|\mathrm{Sn}+4 \mathrm{HNO}_{3} \rightarrow\right| \mathrm{SnO}_{2}+4 \mathrm{NO}_{2}+2 \mathrm{H}_{2} \mathrm{O}
$$

Step 5: Balance the remaining elements by inspection then check the equation to see that it is balanced.

Example: Balance the equation $\mathrm{I}_{2}+\mathrm{Cl}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{HIO}_{3}+\mathrm{HCl}$

Step 1: Assign oxidation numbers to each element to identify which is oxidized and which is reduced.

Step 2: Write the half reactions, balance elements, then add electrons to balance the charges. Multiply each reaction by the lowest whole number so the electrons lost equal electrons gained.

Step 4: Transfer the coefficients into the original reaction.

$$
1 \mathrm{I}_{2}+5 \mathrm{Cl}_{2}+6 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{HIO}_{3}+10 \mathrm{HCl}
$$

Step 5: Balance the remaining elements by inspection then check the equation to see that it is balanced.

Try this one... Balance the equation $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+\mathrm{FeCl}_{2}+\mathrm{HCl} \rightarrow \mathrm{CrCl}_{3}+\mathrm{KCl}+\mathrm{FeCl}_{3}+\mathrm{H}_{2} \mathrm{O}$
Step 1: Assign oxidation numbers to each element to identify which is oxidized and which is reduced.

Step 2: Write the half reactions, balance elements, then add electrons to balance the charges. Multiply each reaction by the lowest whole number so the electrons lost equal electrons gained.

Step 4: Transfer the coefficients into the original reaction.

$$
\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+6 \mathrm{FeCl}_{2}+14 \mathrm{HCl} \rightarrow 2 \mathrm{CrCl}_{3}+2 \mathrm{KCl}+6 \mathrm{FeCl}_{3}+7 \mathrm{H}_{2} \mathrm{O}
$$

Step 5: Balance the remaining elements by inspection then check the equation to see that it is balanced.

Balancing in Acid/Base Solutions:

Sometimes a redox reaction will occur in an acid or base solution.

We follow the same steps as before, but leave hydrogen and oxygen until the end, and then balance by adding H^{+}, OH^{-}or $\mathrm{H}_{2} \mathrm{O}$, according to:

- In acid solutions, we add H^{+}and $\mathrm{H}_{2} \mathrm{O}$ as needed
- In Basic solutions we add OH^{-}and $\mathrm{H}_{2} \mathrm{O}$ as needed.

Example: Balance the following equation in an ACIDIC SOLUTION

Step 1: Assign oxidation numbers to each element to identify which is oxidized and which is reduced.

Step 2: Write the half reactions, balance elements, then add electrons to balance the charges. Multiply each reaction by the lowest whole number so the electrons lost equal electrons gained.

$$
\begin{aligned}
& \text { LEO: }\left(35^{+4} \rightarrow 35^{+6}+\frac{6 e-}{2 e}\right) \times 3 \\
& \text { GER: } \mathrm{Cr}_{2}^{+6}+6 e^{-} \rightarrow 2 \mathrm{Cr}^{+3}
\end{aligned}
$$

Step 4: Transfer the coefficients into the original reaction.

$$
8 \mathrm{H}^{+}+1 \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+3 \mathrm{sO}_{3}^{2-} \rightarrow 2 \mathrm{Cr}^{3+}+3 \mathrm{sO}_{4}^{2-}+4 \mathrm{H}_{2} \mathrm{O}
$$

Step 5: Balance the remaining elements using H^{+}and $\mathrm{H}_{2} \mathrm{O}$

Try this one... Balance the following equation in an ACIDIC SOLUTION

Step 1: Assign oxidation numbers to each element to identify which is oxidized and which is reduced.

Step 2: Write the half reactions, balance elements, then add electrons to balance the charges. Multiply each reaction by the lowest whole number so the electrons lost equal electrons gained.

$$
\begin{aligned}
& \text { LEO: }\left(S C_{2}^{+3} \rightarrow 2 C^{+4}+102 e^{-}\right) \times 5 \\
& \text { GER: }\left(2 \mathrm{mn}^{+7}+10 e^{-} \rightarrow 2 \mathrm{mn}^{+2}\right) \times 2
\end{aligned}
$$

Step 4: Transfer the coefficients into the original reaction.

$$
20
$$

$$
16 \mathrm{H}^{+}+5 \mathrm{C}_{2} \mathrm{O}_{4}^{2-}+2 \mathrm{MnO}_{4}^{-} \rightarrow 2 \mathrm{Mn}^{2+}+10 \mathrm{CO}_{2}+8 \mathrm{H}_{2} \mathrm{O}
$$

Step 5: Balance the remaining elements using H^{+}and $\mathrm{H}_{2} \mathrm{O}$

Step 1: Assign oxidation numbers to each element to identify which is oxidized and which is reduced.

Step 2: Write the half reactions, balance elements, then add electrons to balance the charges. Multiply each reaction by the lowest whole number so the electrons lost equal electrons gained.

$$
\begin{array}{ll}
\text { LEO: } & C^{-2} \rightarrow C^{+4}+6 e^{-} \\
G E R: & \left(6 M_{n}^{+7}+4 e^{-} \rightarrow 6 m_{n}^{+6}\right) \times 6
\end{array}
$$

Step 4: Transfer the coefficients into the original reaction.

$$
\begin{gathered}
8 \mathrm{OH}^{-}+2 \mathrm{H}_{2} \mathrm{O}+1 \mathrm{CH}_{3} \mathrm{OH}+6 \mathrm{MnO}_{4}^{-} \rightarrow / \mathrm{CO}_{3}^{2-}+6 \mathrm{MnO}_{4}^{2-}+8 \mathrm{H}^{+}+8 \mathrm{OH} \\
8 \mathrm{OH}^{-}+\mathrm{CH}_{3} \mathrm{OH}+6 \mathrm{MnO}_{4}^{-} \rightarrow \mathrm{CO}_{3}^{2-}+6 \mathrm{MnOO}_{4}^{2-}+6 \mathrm{H}_{2} \mathrm{O}
\end{gathered}
$$

Step 5: Balance the remaining elements using H^{+}and $\mathrm{H}_{2} \mathrm{O}$ like in acid solutions, then add OH - to each side to match $\mathrm{H}+$ ions. They will form water, and then cancel any waters on both sides.

Try this one... Balance the following equation in an BASIC SOLUTION

Step 1: Assign oxidation numbers to each element to identify which is oxidized and which is reduced.

Step 2: Write the half reactions, balance elements, then add electrons to balance the charges. Multiply each reaction by the lowest whole number so the electrons lost equal electrons gained.

$$
\begin{aligned}
& \text { LEO: }\left(C_{2}^{+3} \rightarrow 2 C^{+4}+2 e^{-}\right) \times 3 \\
& \text { GER: }\left(m_{n}^{+7}+3 e^{-} \rightarrow m_{n}^{+4}\right) \times 2
\end{aligned}
$$

Step 4: Transfer the coefficients into the original reaction. 20
16

$$
\begin{aligned}
& \mathrm{SOH}^{-}+\frac{8 \mathrm{Ht}}{}+2 \mathrm{MnO}_{4}+3 \mathrm{C}_{2} \mathrm{O}_{4}^{2-} \rightarrow 6 \mathrm{CO}_{2}+2 \mathrm{MnO}_{2}+4 \mathrm{H}_{2} \mathrm{O}+80 \mathrm{H}^{-} \\
& 4 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{MO}_{4}^{-}+3 \mathrm{C}_{2} \mathrm{O}_{4}^{2-} \rightarrow 6 \mathrm{CO}_{2}+2 \mathrm{MnO}_{2}+8 \mathrm{OH}^{-}
\end{aligned}
$$

Step 5: Balance the remaining elements using H^{+}and $\mathrm{H}_{2} \mathrm{O}$ like in acid solutions, then add OH - to each side to match $\mathrm{H}+$ ions. They will form water, and then cancel any waters on both sides.

