Vapour Pressure

Outcomes:

- Operationally define vapour pressure

Vapour Pressure:

Recall that in order for a liquid to VAPORIZE, it must overcome the FORCE of the ATMOSPHERIC PRESSURE.

Vapour Pressure ($\mathbf{P}_{\text {vap }}$)

- Is the pressure of the VAPOUR of a SOLID or LIQUID in EQUILIBRIUM with the solid or liquid state.
- Is a PHYSICAL PROPERTY that can be MEASURED
- When you heat a liquid, you INCREASE the $\boldsymbol{P}_{\text {vap }}$ causing boiling.
- In order for BOILING to occur:

- This means that the LOWER the PRESSURE of the ATMOSPHERE, the LOWER the BOILING POINT.

Boiling Point of Water		
Sea Level (101 kPa)	Banff (84.5 kPa)	$\mathbf{M t}$. Everest (33.7 kPa)
$\mathbf{1 0 0}{ }^{\circ} \mathrm{C}$	$\mathbf{9 5}{ }^{\circ} \mathrm{C}$	$\mathbf{7 0}{ }^{\circ} \mathrm{C}$

Vapour Pressure:

In a SEALED container:
http://www.teachnlearnchem.com/Vapor\ Pressure\ and\ Boiling\ Point.htm

- LIQUID molecules will EVAPORATE, but can also hit the surface and become LIQUID AGAIN.
- RATE of VAPORIZATION will depend on TEMPERATURE.
- If TEMPERATURE is CONSTANT, RATE of vaporization will stay CONSTANT, and the rate of CONDENSATION will INCREASE.

Eventually: Liquid \longleftrightarrow Vapour

- At this point vapour molecules exert a pressure called EQUILIBRIUM VAPOUR PRESSURE by colliding with the walls of the container.

Factors Affecting Rate of Evaporation:

Influence on Rate of Vaporization

We have learned that SURFACE MOLECULES are more likely to escape as vapour. This is because there are more molecules surrounding the interior molecules. Several factors influence the rate of vaporization:

1. Intermolecular Forces

- Polar substances have STRONGER IMF'S holding them together, therefore have LOWER VAPOUR PRESSURES.
- MORE FORCES means its HARDER for the molecules to ESCAPE to the gas phase

Factors Affecting Rate of Evaporation:

2. Surface area

- SURFACE molecules are the MOST LIKELY to ESCAPE since they have LESS FORCES holding them in the liquid phase:

- If we INCREASE surface area of a liquid, we INCREASE the RATE of vapourization (more molecules can escape).

Factors Affecting Rate of Evaporation:

3. Temperature

- TEMPERATURE increases kinetic ENERGY of the molecules, allowing more to escape, INCREASING vapour PRESSURE.

Factors Affecting Rate of Evaporation:

4. Concentration of vapour molecules above liquid

- More vapour = LESS ROOM for new VAPOUR molecules, hence LESS VAPOURIZATION.

Evaporative cooling:

Vaporization is a COOLING process...

\rightarrow Sweat that evaporates has a higher KINETIC ENERGY than sweat that REMAINS, therefore remaining sweat has a LOWER TEMPERATURE.

http://pahs.pasd.com/common/pages/DisplayFile.aspx?itemld=2966486

Simple Cooling Devices:

Evaporative Cooling

- When EVAPORATION occurs, particles with the HIGHEST KINETIC ENERGIES are ESCAPING into the gas phase.
- Molecules left behind have LOWER kinetic ENERGIES, causing a DECREASE in the AVERAGE kinetic ENERGY of particles in the LIQUID.
- The DECREASE in kinetic ENERGY is observed as a DECREASE in TEMPERATURE \rightarrow evaporative cooling.

This principle was used before refrigerators by people in warm climates. They would put liquids in porous clay pots which allowed evaporation through the clay, leaving the cooler molecules behind. The clay would also insulate the liquid from outside heat.

Effect on Climate:

Moderating Effects of Large Bodies of Water...

- In the fall, as the temperature drops below that of an ocean or large lake, the water gives up its energy (heat) to the atmosphere, moderating the drop in air temperature.
- In the summer, as the temperature rises, an ocean or lake will absorb the heat, moderating the rise in air temperature.
- It takes an exchange of a tremendous amount of energy to heat or cool an ocean, causing a gradual drop/rise in both air and water temperature.

Effect on Climate:

The land absorbs heat from the Sun more quickly than the water does. The air over the land becomes warmer as some of this absorbed heat is radiated back into the air. The warmer air begins to rise, and the cooler air over the water moves in to take its place.

As the Sun goes down, the land cools off quickly, but the water does not. The water radiates some of its stored heat into the air, and this warmed air begins to rise. The cooled air over the land moves in to take the place of the rising warm air over the water.

Measuring Vapour Pressure:

We measure vapour pressure using an OPEN-END MANOMETER.

The MANOMETER works by comparing the pressure of the VAPOUR to that of the ATMOSPHERE.

One end of a " \underline{U}-TUBE" is connected to a vessel containing the GAS, and the other is open to the ATMOSPHERE. The u-tube contains a KNOWN VOLUME of liquid (usually MERCURY).
$\underline{\boldsymbol{\Delta}} \boldsymbol{h}$ is the DIFFERENCE between the HEIGHT of mercury in EACH SIDE of the u-tube, measured in $\underline{\mathbf{m m H g}}$.

Measuring Vapour Pressure Using a Manometer

Measuring Vapour Pressure:

We can find the PRESSURE of the GAS by ADDING or SUBTRACTING Δh from the actual ATMOSPHERIC pressure.

There are three conditions possible with a manometer:

1. $\quad P_{v a p}=P_{a t m}$

- Level of mercury will be equal on both sides of the "u-tube". ($\Delta h=0$)

2. $\quad P_{\text {vap }}>P_{a t m}$

- Mercury on right will be higher than Mercury on left.

$$
P_{v a p}=P_{a t m}+\Delta h
$$

3. $P_{\text {vap }}<P_{\text {atm }}$

- Mercury on left will be higher than Mercury on right.

$$
P_{\text {vap }}=P_{\text {atm }}-\Delta h
$$

Converting Pressure Units:
We will have to be able to convert between different pressure units. Remember the units for standard pressure:

$$
1 \mathrm{~atm}=101.3 \mathrm{kPa}=760 \mathrm{mmHg}
$$

Example Conversions:
Convert the following to the other two pressure units:

$$
\begin{aligned}
& \text { a. } 650 \mathrm{mmag} \times \frac{1 \mathrm{~atm}}{760 \mathrm{mwtHg}}=0.855 \mathrm{~atm} \\
& 650 \text { marg } \times \frac{101.3 \mathrm{kPa}}{760 \mathrm{mmHg}}=86.64 \mathrm{kPa}
\end{aligned}
$$

$$
\begin{aligned}
& \text { b. } 110.5 \mathrm{kPa} \times \frac{1 \mathrm{~atm}}{101.3 \mathrm{kPa}}=1.09 \mathrm{~atm} \\
& 110.5 \mathrm{kPa} \times \frac{760 \mathrm{mmHg}}{101.3 \mathrm{kPa}}=829.02 \mathrm{mmHg}
\end{aligned}
$$

Reading a Manometer Examples:

1. Assuming the valve is open, what is the pressure of the gas in kilopascals?

2. Determine the pressure of the gas in mmHg and kPa .

Reading a Manometer Examples:
3. When the valve in the manometer to the right is opened, will the mercury in the right arm of the U tube move up or down?

$$
\text { Pas }>\text { Patm }
$$

4. After the mercury stops moving in the manometer from question \#3, what will be the difference in height ($\Delta \mathrm{h}$) in the two arms of the tube?

$$
\begin{aligned}
\text { Pgas-Patm } & =\Delta H \\
\Delta H & =4.65 \mathrm{kPa} \times \frac{760 \mathrm{mmHy}}{101.3 \mathrm{kPa}}=34.88 \mathrm{mmtg}
\end{aligned}
$$

