## Putting all the Graphs Together

## Outcomes:

S2-3-02 Collect displacement data to calculate \& graph velocity vs. time for an object accelerating at a constant rate.
S2-3-03 Analyze the relationships among velocity, time and acceleration for an object accelerating at a constant rate.

## Putting it all together...

If we have an object in motion, there are two scenarios that we have looked at:

1. The object is NOT ACCELERATING
$\rightarrow$ moving at a CONSTANT VELOCITY.
2. The object is ACCELERATING at a CONSTANT RATE.
$\rightarrow$ Velocity is INCREASING
We must be able to recognize and interpret these different types of motion.



## 1. Constant Velocity Graphs

If there is constant velocity, there is NO ACCELERATION.

## Example:

The car below is travelling at CONSTANT speed because it's position changes by the SAME AMOUNT each time interval:


The graphs of displacement, velocity and acceleration vs. time would look like this:


## 1. Constant Velocity Graphs

## What if the object was travelling in the other direction?

## Try this one...

Sketch a displacement-time, velocity-time and an acceleration time graph (just like in the previous example) for the following car:

- ve


Velocity vs Time


Acceleration vs Time


## 2. Non-Constant Velocity Graphs

If velocity is INCREASING or DECREASING, then there must be ACCELERATION!

## Example:

The car below is ACCELERATING because its POSITION is INCREASING during each INTERVAL, indicating an increasing SPEED.


The graphs of displacement, velocity and acceleration vs. time would look like:


## 2. Non-Constant Velocity Graphs

If velocity is INCREASING or DECREASING, then there must be ACCELERATION!

## Example:

The car below is ACCELERATING because its POSITION is INCREASING during each INTERVAL, indicating an increasing SPEED.


The graphs of displacement, velocity and acceleration vs. time would look like:


## 2. Non-Constant Velocity Graphs

Acceleration can occur in the opposite direction as well:


The graphs ot displacement, velocity and acceleration vs. time would look like:


Notice that:

- The car is travelling TOWARD the ORIGIN.
- Displacement is DECREASING at an INCREASING rate.
- Velocity is INCREASING (acceleration) in the NEGATIVE direction.
- Acceleration is still CONSTANT, and NEGATIVE.


## The Meaning of the Sign for Acceleration

When we used directions (+/-) for displacement and velocity it told us which way the object travelled.

However, with acceleration the SIGN tells us the direction in which the ACCELERATION ACTS.

- A POSITIVE acceleration acts to the RIGHT,
- A NEGATIVE acceleration acts to the LEFT.

A positive acceleration does NOT always mean that an object is speeding up. SOMETIMES an object with a POSITIVE acceleration is SLOWING DOWN.

To make SENSE of the SIGN of ACCELERATION and whether an object is SPEEDING up or SLOWING down, you must also consider the SIGN OF VELOCITY.

## The Meaning of the Sign for Acceleration

The following table summarizes the different situations that can occur.

| Sign (direction) <br> of Velocity | Sign (direction) of <br> Acceleration | What you see: |
| :---: | :---: | :---: |
| + (right) | + (right) | Moving right, <br> speeding up |
| + (right) | - (left) | Moving right, <br> slowing down |
| - (left) | - (left) | Moving left, <br> speeding up |
| - (left) | + (right) | Moving left, <br> slowing down. |

At first, the table may look very confusing. It is better to remember a simple rule.

If VELOCITY and ACCELERATION have the SAME sign, the object will be SPEEDING UP.
$\rightarrow$ Acceleration is acting in the SAME direction as the MOTION
If VELOCITY and ACCELERATION have OPPOSITE signs, the object will be SLOWING DOWN.
$\rightarrow$ Acceleration is acting in the OPPOSITE direction of the MOTION.

