Mass of Compounds \& The Mole HEY LADIES

TAKE MY NUMBER

Outcomes:

6.0221415 $\times 10^{23}$
6.0221415 $\times 10^{23}$

- Calculate the mass of compounds in atomic mass units
- Describe the concept of the mole and it's importance to measurement in chemistry.
- Calculate the molar mass of various substances.

Atomic Mass

Since atoms are so SMALL, we cannot measure their MASS in LBS or KG'S.

$$
0.00000000000000000000000167
$$

We created a new unit called an ATOMIC MASS UNIT (amu or $\underline{\mu}$). $1 \mathrm{amu}=1.67 \times 10^{-24} \mathrm{~g}$)

This value is found on your periodic table: 1 C atom = $\underline{\mathbf{1 2} .0 \mathrm{amu}}$

Chemical Formulas:

- Recall that the NUMBER of ATOMS of each ELEMENT in a chemical formula are indicated by SUBSCRIPTS.
- I.e. $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4}$ (asprin) has $\underline{9} \mathrm{C}$-atoms, $\underline{8} \mathrm{H}$ atoms, and $\underline{4} \mathrm{O}$-atoms

Chemical Formulas:

Molecular vs. Ionic Compounds:

- MOLECULAR compounds (molecules) contain atoms linked together by COVALENT BONDS (electrically NEUTRAL).
- IONIC compounds are NOT MOLECULES because they are composed of IONS.
- le. You can have WATER MOLECULES, but you can't have SALT MOLECULES.

Mass of Compounds:

Molecular Mass

$6,08,000,000,000,000,000,000,000$
The SUM of ATOMIC MASSES of atoms in a MOLECULE.

$$
\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4}=(12 \times 9)+(1.01 \times 8)+(16 \times 4)=180.08 \mathrm{amu}
$$

Formula Mass

Is the SAME as MOLECULAR mass, but with IONIC compounds.

$$
\mathrm{Na}_{2} \mathrm{~S}=(23 \times 2)+32.1=78.1 \mathrm{amu}
$$

NOTE:

The terms MOLECULAR mass, FORMULA mass, MOLECULAR weight, and FORMULA weight are often interchangeable.

The Mole

A unit used to describe ENOUGH ATOMS to EQUAL the ATOMIC MASS(or formula mass) in GRAMS.

Designed to be a convenient multiple like a "DOZEN".

Ex) 1 molecule of sugar $\left(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\right)$ weighs 342.34 amu .
\rightarrow We CANNOT measure AMU
\rightarrow We CAN measure GRAMS!

The NUMBER of MOLECULES it takes to have $\mathbf{3 4 2 . 3 4}$ GRAMS of SUGAR is $\mathbf{1 \text { MOLE! }}$ The mole explained!

Molar Mass

Same as FORMULA mass, but with units $\mathrm{g} / \mathrm{mol}$

- Is the MASS of 1 MOLE of a SUBSTANCE (like the 342.34 g above).
- One CARBON atom weighs $\mathbf{1 2 \text { AMU, but an AMU is very small, and difficult to }}$ MEASURE.
- A HUGE NUMBER of carbon ATOMS will weigh $\underline{12 \mathrm{~g}}$, and we call that NUMBER of atoms a MOLE.

6.02×10^{23} atoms $=1$ mole $\underline{\text { AVOGADRO'S }} \underline{\text { NUMBER }}\left(N_{A}\right)$

carbon hydrogen methanol

6.022×10^{23} carbon atoms:

12 g

6.022×10^{23} hydrogen molecules:
2 g

6.022×10^{23} methanol molecules:
32 g

Molar Mass Calculations

Found by ADDING the ATOMIC MASS of all atoms in a molecule.

Examples:
Find the mass of one mole of the following:

$$
\begin{aligned}
& \mathrm{MgCO}_{3}=24.3+12+(16 \times 3)=\frac{84.3 \mathrm{~g}}{\mathrm{~mol}} \\
& \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}=(40.1 \times 3)+(31 \times 2)+(16 \times 8)=310 . \frac{3 \mathrm{~g}}{\mathrm{~mol}} \\
& \text { Molecular mass }=\text { mass of } 1 \text { molecule } \Rightarrow \text { amu } \\
& \text { Molar mass }=\text { mass of } 6.02 \times 10^{23} \text { molecules } \Rightarrow \mathrm{g} / \text { mol }
\end{aligned}
$$

