Mass of Compounds & The Mole HEY LADIES

TAKE MY NUMBER

× 10 ²³	0221415	0221415	0221415	0221415	0221415
	× 10 ²³				
ė	ò.	°.	·0	ò.	6.

Outcomes:

- Calculate the mass of compounds in atomic mass units
- Describe the concept of the mole and it's importance to measurement in chemistry.
- Calculate the molar mass of various substances.

Atomic Mass

Since atoms are so SMALL, we cannot measure their MASS in LBS or KG'S.

This value is found on your periodic table: 1 C atom = **12.0 amu**

Chemical Formulas:

- Recall that the **NUMBER** of **ATOMS** of each **ELEMENT** in a chemical formula are indicated by SUBSCRIPTS.
- I.e. C_gH_gO₄ (asprin) has <u>9</u> C-atoms, <u>8</u> H atoms, and <u>4</u> O-atoms

Chemical Formulas:

Molecular vs. Ionic Compounds:

 MOLECULAR compounds (molecules) contain atoms linked together by <u>COVALENT</u> <u>BONDS</u> (electrically <u>NEUTRAL</u>).

- IONIC compounds are <u>NOT MOLECULES</u> because they are composed of <u>IONS</u>.
 - Ie. You can have <u>WATER</u> <u>MOLECULES</u>, but you can't have <u>SALT</u> <u>MOLECULES</u>.

Mass of Compounds:

Molecular Mass

The **SUM** of **ATOMIC MASSES** of atoms in a **MOLECULE**.

 $C_{9}H_{8}O_{4} = (12 \times 9) + (101 \times 8) + (16 \times 4) = 150.08 \text{ amm}$

Formula Mass Is the <u>SAME</u> as <u>MOLECULAR</u> mass, but with <u>IONIC</u> compounds. Na₂S = $(23 \times 2) + 32 \cdot 1 = 78 \cdot 1$ amo

NOTE:

The terms **MOLECULAR** mass, **FORMULA** mass, **MOLECULAR** weight, and **FORMULA** weight are often interchangeable.

The Mole

A unit used to describe **ENOUGH ATOMS** to **EQUAL** the **ATOMIC MASS**(or formula mass) in **GRAMS**.

Designed to be a convenient multiple like a "DOZEN".

Ex) 1 molecule of sugar $(C_{12}H_{22}O_{11})$ weighs 342.34 amu.

→ We <u>CANNOT</u> measure <u>AMU</u> →We <u>CAN</u> measure <u>GRAMS</u>!

The NUMBER of MOLECULES it takes to have 342.34 GRAMS of SUGAR is 1 MOLE!

The mole explained!

Molar Mass

Same as FORMULA mass, but with units g/mol

- Is the <u>MASS</u> of <u>1 MOLE</u> of a <u>SUBSTANCE</u> (like the 342.34g above).
- One <u>CARBON</u> atom weighs <u>12 AMU</u>, but an <u>AMU</u> is very small, and difficult to <u>MEASURE</u>.
- A <u>HUGE</u> <u>NUMBER</u> of carbon <u>ATOMS</u> will weigh <u>12g</u>, and we call that <u>NUMBER</u> of atoms a <u>MOLE</u>.

<u>6.02 x 10²³ atoms</u> = 1 mole <u>AVOGADRO'S</u> <u>NUMBER</u> (N_A)

Molar Mass Calculations

Found by <u>ADDING</u> the <u>ATOMIC MASS</u> of all atoms in a molecule.

Examples:

Find the mass of one mole of the following:

 $MgCO_3 = 24.3 + 12 + (16 \times 3) = 84.39$ mol

$$Ca_{3}(PO_{4})_{2} = (40.1 \times 3) + (31 \times 2) + (16 \times 8) = 310.39$$

mol