Equilibrium Graphs

Outcome:

Interpret concentration versus time graphs.

Equilibrium Graphs...

We can use Le Chatelier's Principle to interpret graphs of concentration vs. time. The graphs we will be studying in this lesson illustrate the changes for the $NO_2-N_2O_4$ equilibrium system:

 $2 \text{ NO}_2(g) \leftrightarrow N_2O_4(g)$ $\Delta H = -58.0 \text{ kJ/mol } N_2O_4$

In all scenarios, we will assume the system was at equilibrium, then a stress was applied.

Recall, CONCENTRATIONS are CONSTANT at equilibrium.

 $2NO_{2(q)} \leftrightarrow N_2O_{4(g)}$

Changing Reactant Concentrations:

• <u>ADD</u> more <u>NO₂</u>, we get:

According to the graph,

- INITIALLY the system is at EQUILIBRIUM.
- When <u>NO₂</u> is added, <u>[NO₂] INCREASES</u>, then <u>DECREASES</u> as it is <u>USED</u> up.
- [N₂O₄] will INCREASE as more PRODUCTS are made

Changing Reactant Concentrations:

• If we <u>**REMOVE</u>** some <u>**NO**</u>₂, we get:</u>

$$2NO_{2(g)} \leftrightarrow N_2O_{4(g)}$$

According to the graph,

- INITIALLY the system is at EQUILIBRIUM.
- When <u>NO₂</u> is removed, <u>[NO₂] DECREASES</u>, then <u>INCREASES</u> as it is <u>MADE</u>.
- [N₂O₄] will <u>DECREASE</u> as more <u>REACTANTS</u> are <u>MADE</u>.

Changing Product Concentrations:

Same as above, but <u>OPPOSITE</u>.

 $2NO_{2(g)} \leftrightarrow N_2O_{4(g)}$

Changing Temperature...

• Increase the temperature, we get:

$$2NO_{2(g)} \leftrightarrow N_2O_{4(g)} + 58kJ$$

According to the graph,

- **INITIALLY** the system is at **EQUILIBRIUM**.
- Reaction is <u>EXOTHERMIC</u>, <u>REVERSE</u> reaction <u>INCREASES</u>, so <u>[NO₂] INCREASES</u>, and <u>[N₂O₄]</u> <u>DECREASES</u>.

Changing Temperature...

• If we **DECREASE** the temperature, the **OPPOSITE** will happen

According to the graph,

- INITIALLY the system is at EQUILIBRIUM.
- Reaction is <u>EXOTHERMIC</u>, <u>REVERSE</u> rate <u>DECREASES</u>, so [NO₂] <u>DECREASES</u>, and [N₂O₄] <u>INCREASES</u>.

Since the <u>RATIO</u> of concentrations is changed, our <u>K_{eq} VALUE</u> will <u>CHANGE</u>. This is why <u>TEMPERATURE</u> is the <u>ONLY FACTOR</u> affecting <u>K_{eq}</u>.

Adding a Catalyst:

- Recall that a catalyst <u>SPEEDS</u> up a reaction by <u>LOWERING</u> the <u>ACTIVATION ENERGY</u>.
- Since the <u>ACTIVATION ENERGY</u> is <u>LOWERED</u> for <u>BOTH</u> the <u>FORWARD</u> and <u>REVERSE</u> process, <u>BOTH</u>
 <u>REACTIONS</u> will go <u>FASTER</u>.
- The system will simply reach equilibrium much <u>FASTER</u> (<u>NO CHANGE</u> to equilibrium <u>CONCENTRATIONS</u>)
 - Therefore the concentration vs. time graph would just be **<u>SHORTER</u>**.
- If the system was <u>ALREADY</u> at <u>EQUILIBRIUM</u> when the catalyst was added, there would still be <u>NO</u>
 <u>CHANGE</u>, because <u>BOTH FORWARD</u> and <u>REVERSE PROCESSES</u> are <u>INCREASED</u>.