Concentration

Diluted

Concentrated

Outcomes:

- Differentiate among, and give examples of the use of various representations of concentration. Include: g/L, \%W/W, \%W/V, \%V/V, ppm, ppb, mol/L
- Solve problems involving calculation for concentration, moles, mass and volume.

Concentration:

The AMOUNT of SOLUTE in a given AMOUNT of SOLVENT or SOLUTION.

- We usually see concentration measured in g/L or mol/L (MOLARITY)

Same Molarity!

$1 \mathrm{Hap}_{5}$	$H_{(a)}$		Different Molarities!

Concentrated \& Dilute Solutions:

Concentrated Solutions:

- Solutions that contains a LARGE AMOUNT of SOLUTE for the AMOUNT of SOLVENT.
- PANCAKE SYRUP is a concentrated solution of sugar and water.

Dilute Solution:

- Solutions that have a SMALL AMOUNT of SOLUTE for the AMOUNT of SOLVENT.
- LEMONADE is a dilute solution of lemon juice, sugar and water.

Concentrated Solution

Units for Concentration:

$\mathrm{g} / \mathrm{L}=$ Grams of SOLUTE in 1 L of SOLUTION

$$
\begin{aligned}
& \% W / W=\frac{\text { Mass }_{\text {solute }}}{100 g \text { Solution }} \times 100 \\
& \% W / V=\frac{\text { Mass }_{\text {solute }}}{100 \text { mLSolution }} \times 100 \\
& \% V / V=\frac{\text { Volume }_{\text {solute }}}{100 m L S o l u t i o n} \times 100 \\
& \text { ppm }=\text { PARTS PER MILLION }
\end{aligned}
$$

ex. 10 ppm sodium ions in water $=10$ sodium ions in 1 million particles of water
ppb = PARTS PER BILLION (same idea as above)

Molarity (mo ldL):

- The number of MOLES of solute dissolved in each liter of solution.
- It is expressed as "्ㅡ", " $\underline{\text { " }}$, or square brackets "[]"
- Units: moles/L

$$
[\mathrm{NaCl}]=5 \frac{\mathrm{~mol}}{\mathrm{~L}}
$$

$$
\text { Molarity }=\frac{\text { moles of solute }}{\text { Litres of solution }}
$$

"Concentration of $\mathrm{NaCl} "$

Examples:

$$
M=\frac{m o l}{L}
$$

1. What is the molarity if 5.00 mol of CoCl_{2} is dissolved in 0.1 L of solution?

$$
\frac{5.00 \mathrm{~mol}}{0.1 \mathrm{~L}}=50 \frac{\mathrm{~mol}}{\mathrm{~L}}=\left[\mathrm{CoCl}_{2}\right]
$$

Examples (Con't):
2. What is the molarity of a solution formed by mixing $10.0 \mathrm{~g} \mathrm{H}_{2} \mathrm{SO}_{4}$ with enough water to make 100.0 ml of solution?

$$
10.0 \mathrm{~g} \times \frac{1 \mathrm{~mol}}{98.12 \mathrm{~g}}=\frac{0.1 \mathrm{~mol}}{0.1 \mathrm{~L}}=1 \frac{\mathrm{~mol}}{\mathrm{~L}}=\left[\mathrm{H}_{2} 5 \mathrm{On}_{\mathrm{u}}\right]
$$

3. What is the number of moles and mass of NaCl needed to make 1.0 L of a $0.1 \mathrm{~mol} / \mathrm{L}$ solution?

$$
1.0 \mathrm{~L} \times \frac{0.1 \mathrm{~mol}}{12}=0.1 \mathrm{~mol} \mathrm{NaCl} \times \frac{58.5 \mathrm{~g}}{1 \mathrm{~mol}}=5.85 \mathrm{gNaCl} \quad \frac{0.1 \mathrm{~mol}}{1 \mathrm{~L}} \text { on } \frac{1 \mathrm{~L}}{0.1 \mathrm{~mol}}
$$

4. How would we make the solution in \#3?

What volume of $0.5 \frac{\mathrm{~mol}}{\mathrm{~L}} \mathrm{NaCl}$ would contain 1.5 mol .

$$
1.5 \text { mot } \times \frac{1 L}{0.5 \operatorname{mot}}=3 L
$$

