Combined Gas Law

Outcomes:

- Solve problems involving the relationship among pressure, temperature and volume of a gas using dimensional analysis.

The Combined Gas Law

So far we have the following gas laws:

1. Boyle's Law

$$
P_{1} V_{1}=P_{2} V_{2}
$$

2. Charles' Law

$$
\frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}}
$$

3. Gay-Lussac's Law

$$
\frac{P_{1}}{T_{1}}=\frac{P_{2}}{T_{2}}
$$

The Combined Gas Law

We can combine the above formulas to derive the COMBINED GAS LAW...

Combine the laws together:

$$
\left(P_{1} V_{1}\right)\left(\frac{V_{1}}{T_{1}}\right)\left(\frac{P_{1}}{T_{1}}\right)=\left(P_{2} V_{2}\right)\left(\frac{V_{2}}{T_{2}}\right)\left(\frac{P_{2}}{T_{2}}\right)
$$

Multiply through:

$$
\left(\frac{V_{1}^{2} P_{1}^{2}}{T_{1}^{2}}\right)=\left(\frac{V_{2}^{2} P_{2}^{2}}{T_{2}^{2}}\right)
$$

Take the square root of both sides:

$$
\frac{\sqrt{P_{1}^{2} V_{1}^{2}}}{\sqrt{T_{1}^{2}}}=\frac{\sqrt{P_{2}^{2} V_{2}^{2}}}{\sqrt{T_{2}^{2}}}
$$

The Combined Gas Law

We end up with:

$$
\left(\frac{P_{1} V_{1}}{T_{1}}\right)=\left(\frac{P_{2} V_{2}}{T_{2}}\right)
$$

\rightarrow This is the combined gas law.

We can use this law to solve ANY gas problem involving PRESSURE, TEMPERATURE, and VOLUME. (temperature MUST be in KELVIN)

It can also be used for any of the previous questions we have seen, since one of the variables were always CONSTANT, they would CANCEL.

Combined Gas Law Problems:

Examples:

If a gas occupies a volume of 25.0 L at $25.0^{\circ} \mathrm{C}$ and 1.25 atm , calculate the volume at $128^{\circ} \mathrm{C}$ and 0.750 atm

Combined Gas Law Problems:

Examples:

A cylinder with fixed volume contains a gas at a pressure of 652 kPa and a temperature of $25^{\circ} \mathrm{C}$. If the cylinder is heated to $150^{\circ} \mathrm{C}$, what will the new pressure be? (notice that volume is constant)

Combined Gas Law Problems:

Try these ones...

A gas has a volume of 125 L at 325 kPa and $58.0^{\circ} \mathrm{C}$. Calculate the temperature (in ${ }^{\circ} \mathrm{C}$) to produce a volume of 22.4 L at 101.3 kPa

Combined Gas Law Problems:

Try these ones...

Salvage divers often use lift bags to lift objects to the surface. A lift bag contains 145L of air at the bottom of the lake, at a temperature of $5.20^{\circ} \mathrm{C}$ and a pressure of 6.00 atm . As the bag is released, it ascends to the surface, where the pressure is 1.00 atm and $16.0^{\circ} \mathrm{C}$. Calculate the volume of air in the bag at the surface. If the maximum volume of the bag is 750 L , will the bag burst at the surface?

