Severe Weather

TORNADO VS LIGHTNING

Outcomes:
get out your camera, this should be interesting.
S2-4-04 Explain the formation and dynamics of selected severe weather phenomena....
S2-4-05 Collect, interpret, and analyze meteorological data related to a severe weather event.
S2-4-06 Investigate the social, economic, and environmental impacts of a recent severe weather event.

Thunderstorms...

Stages in the development of a thunderstorm

Stage \#1 - Cumulus Stage

- The sun HEATS the earth's surface during the day.
- The HEAT on the surface and WARMS the AIR around it. Since warm air is lighter than cool air, it starts to RISE (known as an UPDRAFT).
- If the air is MOIST, then the warm air CONDENSES into a CUMULUS CLOUD.
- The cloud will continue to GROW as long as warm air below it CONTINUES to RISE.

Thunderstorms...

Stage \#2 - Mature Stage

- As the CUMULUS cloud gets BIGGER, the amount of WATER in it gets large and HEAVY and starts to fall as the RISING AIR can no longer HOLD it up.
- COOL DRY air starts to enter the cloud and falls, creating a DOWNDRAFT that pulls the heavy WATER downward, making RAIN.
- This cloud has become a CUMULONIMBUS (anvil) cloud because it has an UPDRAFT, a DOWNDRAFT, and RAIN.
- LIGHTNING AND THUNDER start to occur, as well as HEAVY RAIN. The CUMULONIMBUS is now a THUNDERSTORM CELL.

Thunderstorms...

Stage \#3 - Dissipating Stage

- After about 30 MINUTES, the thunderstorm begins to DISSIPATE (weaken).
- This occurs when the DOWNDRAFTS in the cloud begins to DOMINATE over the UPDRAFT.
- Since WARM moist air can no longer RISE, cloud DROPLETS can no longer form.
- The storm DIES OUT with light RAIN as the cloud DISAPPEARS from bottom to top.

Thunderstorms...

Warm Air Rising

Formation of Lightning

Tornadoes...

- Tornadoes form when a THUNDERSTORM becomes an intense storm maintaining a highly organized CIRCULATION with a CONTINUOUS TILTED large UPDRAFT.
- Inside this "supercell" the interaction of winds of differing speeds produces a whirling motion, which becomes a VORTEX and then frequently a tornado.
- As air continues to rise UPWARD, the vortex spins FASTER and FASTER, and a funnel cloud forms.
- When a cloud like this TOUCHES the GROUND, it is then considered to be a TORNADO.

Classes of Tornadoes...

Main Types of Tornadoes

- Tornadoes are CLASSIFIED/MEASURED by the FUJITA SCALE.
- The Fujita Scale is used to RATE the INTENSITY of a tornado by examining the DAMAGE CAUSED by the tornado after it has passed over a man-made structure.
- The Fujita scale has values of FO TO F6.

A key point to remember is this: the size of a tornado is NOT necessarily an indication of its intensity. LARGE tornadoes can be WEAK, and SMALL tornadoes can be VIOLENT.

Classes of Tornadoes...

Fujita damage scale

Classes of Tornadoes...

Table 10-1 Fujita Intensity Scale

Wind Speed
Scale (KPH) (MPH)
F0 $<116<72 \quad$ Light Damage

Damage to chimneys and billboards; broken branches; shallow-rooted trees pushed over.

Expected Damage

Moderate Damage

The lower limit is near the beginning of hurricane wind speed. Surfaces peeled off roofs; mobile homes pushed off foundations or overturned; moving autos pushed off the road.
F2 181-253 113-157 Considerable Damage

Roofs torn off frame houses; mobile homes demolished; boxcars pushed over; large trees snapped or uprooted; light-object missiles generated.

F3 $\quad 254-332 \quad 158-206 \quad$ Severe Damage

Roofs and some walls torn off well-constructed houses; trains overturned; most trees in forest uprooted; heavy cars lifted off ground and thrown.
F4 $\quad 333-419 \quad 207-260 \quad$ Devastating Damage

Well-constructed houses leveled; structures with weak foundations blown some distance; cars thrown and large missiles generated.

Incredible Damage

Strong frame houses lifted off foundations and carried considerable distance to disintegrate; automobile-sized missiles fly through the air farther than 100 m ; trees debarked; incredible phenomena occur.

Hurricanes...

- A hurricane is an INTENSE, ROTATING storm system that forms over WARM TROPICAL WATERS
- Form in the LATE SUMMER OR EARLY FALL.
- Are CIRCULAR in shape, ranging from $\underline{\mathbf{3 0 0}}$ to $\underline{\mathbf{1 0 0 0}} \mathbf{~ k m}$ across, with winds over $118 \mathrm{KM} / \mathrm{H}$ within 50 km of the center.
- Are formed by a LOW-PRESSURE DISTURBANCE over a large body of WARM WATER. The EVAPORATION of this water will INTENSIFY the resulting storm.
- If the storm is far enough from the EQUATOR the winds will CIRCULATE around a center of low pressure due to the CORIOLIS FORCE.

Hurricanes...

The Coriolis force is TOO WEAK near the EQUATOR to create the needed rotation

Paths of Hurricanes...

The FORWARD MOVEMENT of hurricanes is SLOW, typically 15 to $25 \mathrm{~km} / \mathrm{h}$ in the lower latitudes.

Typical paths of motion of hurricanes, cyclones and typhoons:

Stages of Hurricane Development...

1. TROPICAL DISTURBANCE:

- The first stage is a COLLECTION of THUNDERSTORMS forming in the easterly flow over warm tropical waters with only slight rotation.

2. TROPICAL DEPRESSION:

- Next, the storm develops a WELL-DEFINED CENTRE OF LOW PRESSURE with winds of 37 to $62 \mathrm{~km} / \mathrm{h}$.

3. TROPICAL STORM:

- Next, the storm becomes an INTENSE CENTRE OF LOW PRESSURE and carries winds of between 63 and $117 \mathrm{~km} / \mathrm{h}$.

4. HURRICANE:

- When the wind speeds are $\mathbf{1 1 8} \mathbf{K M} / \mathrm{H}$ AND HIGHER, the storm is considered a hurricane.

Features of a Hurricane...

EYE:

- The major feature within a hurricane is the eye, a small region of relatively calm and clear air in the centre, 15 kilometres or so across.

EYEWALL:

- The eye is surrounded by clouds that make up the eyewall; here the weather is most severe with high winds and heavy precipitation.

SPIRAL RAIN BANDS:

- Feeding into the wall cloud region are spiral bands of clouds, often composed of strong thunderstorms.

Damage from a Hurricane...

Hurricanes are especially damaging because of 2 things:

1. STORM SURGE:

- 90% of hurricane deaths are due to HIGH WATER rather than high winds.
- Due to the low pressure and strong winds, hurricanes create a HUGE MOUND OF WATER called a STORM SURGE (especially in shallow coastal waters)
- If the surge occurs during a high tide, the increase in water level can be as much as SIX METRES.
- Large-scale EVACUATIONS of people from low-lying areas prevent massive loss of life due to such flooding.

Damage from a Hurricane...

2. WIND DAMAGE:

- Hurricane winds have been recorded at speeds up to $\mathbf{3 0 0} \mathrm{KM} / \mathrm{H}$.
- Beyond the damage caused directly by such winds, wind-driven waves on top of the storm surge compound the flooding problem by battering and eroding coastal features.

Weather Warning Systems...

In order to lessen the impact severe weather can have, we have a warning system in place to help people make decisions with respect to weather:

Severe Weather Watch:

Conditions are present for extreme weather to occur in your area, so you should pay attention to further news updates.

Severe Weather Warning:

Extreme weather is highly likely to arrive somewhere in your area or may already be happening, so you should take appropriate precautions.

Lightening Bolt Calculation:

Every 3 seconds is equal to 1 km or 5 seconds is equal to 1 mile.

