Severe Weather

TORNADO VS LIGHTNING

get out your camera, this should be interesting.

Outcomes:

S2-4-04 Explain the formation and dynamics of selected severe weather phenomena....

S2-4-05 Collect, interpret, and analyze meteorological data related to a severe weather event.

S2-4-06 Investigate the social, economic, and environmental impacts of a recent severe weather event.

Stages in the development of a thunderstorm

Stage #1 – Cumulus Stage

- The <u>sun</u> **HEATS** the <u>earth's surface</u> during the day.
- The <u>HEAT</u> on the surface and <u>WARMS</u> the <u>AIR</u> around it. Since warm air is lighter than cool air, it starts to <u>RISE</u> (known as an <u>UPDRAFT</u>).
- If the air is **MOIST**, then the warm air **CONDENSES** into a **CUMULUS CLOUD**.
- The cloud will continue to GROW as long as warm air below it CONTINUES to

Stage #2 – Mature Stage

- As the <u>CUMULUS</u> <u>cloud</u> gets <u>BIGGER</u>, the amount of <u>WATER</u> in it gets large and <u>HEAVY</u> and starts to fall as the <u>RISING</u> <u>AIR</u> can no longer <u>HOLD</u> it up.
- <u>COOL</u> <u>DRY</u> air starts to enter the cloud and falls, creating a <u>DOWNDRAFT</u> that pulls the heavy <u>WATER</u> downward, making <u>RAIN</u>.
- This cloud has become a <u>CUMULONIMBUS</u> (*anvil*) cloud because it has an <u>UPDRAFT</u>, a <u>DOWNDRAFT</u>, and <u>RAIN</u>.
- <u>LIGHTNING AND THUNDER</u> start to occur, as well as <u>HEAVY RAIN</u>. The <u>CUMULONIMBUS</u> is now a <u>THUNDERSTORM CELL</u>.

Stage #3 – Dissipating Stage

- After about <u>30 MINUTES</u>, the thunderstorm begins to <u>DISSIPATE</u> (weaken).
- This occurs when the <u>DOWNDRAFTS</u> in the cloud begins to <u>DOMINATE</u> over the <u>UPDRAFT</u>.
- Since <u>WARM</u> moist air can no longer <u>RISE</u>, cloud <u>DROPLETS</u> can no longer form.
- The storm <u>DIES</u> <u>OUT</u> with light <u>RAIN</u> as the cloud <u>DISAPPEARS</u> from bottom to top.

Warm Air Rising

Formation of Lightning

Tornadoes...

- Tornadoes form when a <u>THUNDERSTORM</u> becomes an intense storm maintaining a highly organized <u>CIRCULATION</u> with a <u>CONTINUOUS TILTED</u> large <u>UPDRAFT</u>.
- Inside this "supercell" the interaction of winds of differing speeds produces a whirling motion, which becomes a <u>VORTEX</u> and then frequently a tornado.
- As air continues to rise <u>UPWARD</u>, the vortex spins <u>FASTER</u> and <u>FASTER</u>, and a funnel cloud forms.
- When a cloud like this <u>TOUCHES</u> the <u>GROUND</u>, it is then considered to be a <u>TORNADO</u>.

How Tornadoes Form

Classes of Tornadoes...

Main Types of Tornadoes

- Tornadoes are <u>CLASSIFIED/MEASURED</u> by the <u>FUJITA SCALE</u>.
- The Fujita Scale is used to <u>RATE</u> the <u>INTENSITY</u> of a tornado by examining the <u>DAMAGE</u> <u>CAUSED</u> by the tornado after it has passed over a man-made structure.
- The Fujita scale has values of <u>F0 TO F6</u>.

A key point to remember is this: the size of a tornado is <u>NOT</u> necessarily an indication of its intensity. <u>LARGE</u> tornadoes can be <u>WEAK</u>, and <u>SMALL</u> tornadoes can be <u>VIOLENT</u>.

Classes of Tornadoes...

Fujita damage scale

Classes of Tornadoes...

Table 10–1 Fujita Intensity Scale Wind Speed Scale (KPH) (MPH) Expected Damage <116 F0 < 72Light Damage Damage to chimneys and billboards; broken branches; shallow-rooted trees pushed over. Moderate Damage F1116 - 18072 - 112The lower limit is near the beginning of hurricane wind speed. Surfaces peeled off roofs; mobile homes pushed off foundations or overturned; moving autos pushed off the road. **Considerable Damage** 181 - 253113 - 157F2Roofs torn off frame houses; mobile homes demolished; boxcars pushed over; large trees snapped or uprooted; light-object missiles generated. Severe Damage F3 254 - 332158 - 206Roofs and some walls torn off well-constructed houses; trains overturned; most trees in forest uprooted; heavy cars lifted off ground and thrown. F4 333 - 419207 - 260Devastating Damage Well-constructed houses leveled; structures with weak foundations blown some distance; cars thrown and large missiles generated. Incredible Damage >419F5>260Strong frame houses lifted off foundations and carried considerable distance to disintegrate; automobile-sized missiles fly through the air farther than 100 m; trees debarked; incredible phenomena occur.

Hurricanes...

- A hurricane is an <u>INTENSE</u>, <u>ROTATING</u> storm system that forms over <u>WARM</u> <u>TROPICAL</u> <u>WATERS</u>
- Form in the **LATE SUMMER OR EARLY FALL**.
- Are <u>CIRCULAR</u> in shape, ranging from <u>300</u> to <u>1000</u> km across, with winds over <u>118 KM/H</u> within 50km of the center.
- Are formed by a <u>LOW-PRESSURE DISTURBANCE</u> over a large body of <u>WARM</u> <u>WATER</u>. The <u>EVAPORATION</u> of this water will <u>INTENSIFY</u> the resulting storm.
- If the storm is far enough from the <u>EQUATOR</u> the winds will <u>CIRCULATE</u> around a center of low pressure due to the <u>CORIOLIS FORCE</u>.

Hurricanes...

The Coriolis force is **TOO WEAK** near the **EQUATOR** to create the needed rotation

Paths of Hurricanes...

The **FORWARD MOVEMENT** of hurricanes is **SLOW**, typically 15 to 25 km/h in the lower latitudes.

Typical paths of motion of hurricanes, cyclones and typhoons:

Stages of Hurricane Development...

1. TROPICAL DISTURBANCE:

 The first stage is a <u>COLLECTION</u> of <u>THUNDERSTORMS</u> forming in the easterly flow over warm tropical waters with only slight rotation.

2. TROPICAL DEPRESSION:

Next, the storm develops a <u>WELL-DEFINED CENTRE OF LOW</u>
<u>PRESSURE</u> with winds of 37 to 62 km/h.

3. TROPICAL STORM:

 Next, the storm becomes an <u>INTENSE CENTRE OF LOW PRESSURE</u> and carries winds of between 63 and 117 km/h.

4. HURRICANE:

When the wind speeds are <u>118 KM/H AND HIGHER</u>, the storm is considered a hurricane.

Features of a Hurricane...

EYE:

• The major feature within a hurricane is the eye, a small region of relatively calm and clear air in the centre, 15 kilometres or so across.

EYEWALL :

 The eye is surrounded by clouds that make up the eyewall; here the weather is most severe with high winds and heavy precipitation.

SPIRAL RAIN BANDS:

 Feeding into the wall cloud region are spiral bands of clouds, often composed of strong thunderstorms.

Damage from a Hurricane...

Hurricanes are especially damaging because of 2 things:

1. STORM SURGE:

- 90% of hurricane deaths are due to <u>HIGH WATER</u> rather than high winds.
- Due to the low pressure and strong winds, hurricanes create a <u>HUGE</u> <u>MOUND OF WATER</u> called a <u>STORM SURGE</u> (especially in shallow coastal waters)
- If the surge occurs during a high tide, the increase in water level can be as much as <u>SIX METRES</u>.
- Large-scale <u>EVACUATIONS</u> of people from low-lying areas prevent massive loss of life due to such flooding.

Damage from a Hurricane... 2. WIND DAMAGE:

- Hurricane winds have been recorded at speeds up to <u>300 KM/H</u>.
- Beyond the damage caused directly by such winds, wind-driven waves on top of the storm surge compound the flooding problem by battering and eroding coastal features.

Weather Warning Systems...

In order to lessen the impact severe weather can have, we have a warning system in place to help people make decisions with respect to weather:

Severe Weather Watch:

Conditions are present for extreme weather to occur in your area, so you should pay attention to further news updates.

Severe Weather Warning:

Extreme weather is highly likely to arrive somewhere in your area or may already be happening, so you should take appropriate precautions.

Lightening Bolt Calculation:

Every 3 seconds is equal to 1 km or 5 seconds is equal to 1 mile.