pH - The "Power" of Hydrogen

The PH Scale

Outcomes:

- Discuss the hydronium and hydroxide concentrations in water. Include the ion product of water.
- Given and one of the values $\mathrm{pH},\left[\mathrm{H}_{3} \mathrm{O}^{+}\right],\left[\mathrm{OH}^{-}\right]$, find the remaining values.

Logarithms:

- Like EXPONENTS, logs are a way of working with very LARGE or SMALL numbers.
- A number's logarithm is its EXPONENT when $\underline{10}$ is the BASE. For example:

- The logs of some other numbers are not WHOLE numbers, but the PROCESS is the same:

$$
\log (250)=2.3979 \quad 250=10^{2.3979}
$$

Logarithms:

- A number GREATER than 1 represents a POSITIVE log, and a number LESS than 1 represents a NEGATIVE log:

$$
\begin{array}{lll}
\log (0.001)=-3 & 0.001=10^{-3} & \frac{1}{10^{3}}=0.001 \\
\log (0.00025)=-3.602 & 0.001=10^{-3.602}
\end{array}
$$

Try these ones...
Find the log of the following:

1. $1.3 \times 10^{-5}=-4.89$
2. $2.2 \times 10^{-11}=-10.14$
3. $0.0054=-2.27$

$$
10^{x} \Rightarrow 10^{-2.27}=0.005^{-1}
$$

- pH scale is a LINEAR scale from 0 TO 14.
- It reflects the CONCENTRATION of $\left[\mathrm{H}_{3} \mathbf{O}^{+}\right]$and $\left[\mathrm{OH}^{-}\right]$in a solution.
- PURE WATER is considered to be NEUTRAL ($\mathrm{pH}=\mathbf{7}$).
- The HIGHER the pH , the more ALKALINE (BASIC), the LOWER the pH , the more ACIDIC the solution.
pH scale*
*approximate pH numbers

Calculating pH:
" pH is defined as the negative logarithm of the hydronium ion concentration."
$\left(\mathrm{H}_{3} \mathrm{O}^{+}\right.$OR H^{+})

$$
\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]
$$

Example:
Calculate the pH of a solution with $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=7.3 \times 10^{-5} \mathrm{M}$

$$
p H=-\log 7.3 \times 10^{5}=4.14
$$

We can also calculate the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$given pH , by using the INVERSE of a logarithm (10 ${ }^{\mathbf{x}}$)

$$
\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-\mathrm{pH}}
$$

Example:
Calculate the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$if $\mathrm{pH}=4.14$

$$
\left[1430^{+}\right]=10^{-4.14}=7.24 \times 10^{-5} \frac{\mathrm{~mol}}{\mathrm{~L}}
$$

pOH, The Counterpart To pH:

Since the pH scale deals with both the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$and $\left[\mathrm{OH}^{-}\right]$, there must be a value representing pOH .
" pOH is defined as the negative logarithm of the hydroide ion concentration."

$$
\begin{gathered}
\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right] \quad \text { AND } \quad \mathrm{pH}+\mathrm{pOH}=14 \\
{\left[\mathrm{OH}^{-}\right]=10^{- \text {pOH }}}
\end{gathered}
$$

Examples:

Calculate the pOH of a solution with $\left[\mathrm{OH}^{-}\right]=3.0 \times 10^{-6} \mathrm{M}$

$$
\mathrm{pOH}=-\log \left[\mathrm{OHH}^{-}\right]=-\log 3 \times 10^{-6}=5.5
$$

pOH, The Counterpart To pH:

We can also calculate the $\left[\mathrm{OH}^{-}\right]$given pOH , by using the INVERSE of a logarithm ($\underline{\mathbf{1 0}}^{\mathrm{x}}$) $\left[\mathrm{OH}^{-}\right]=10^{-\mathrm{pOH}}$
2. Calculate the $\left[\mathrm{OH}^{-}\right]$if $\mathrm{pOH}=3$

$$
\begin{aligned}
& \text { if } \mathrm{pOH}=3 \\
& {[\mathrm{OH}]=10^{-\mathrm{pOH}} \cdot 10^{-3}=0.001 \frac{\mathrm{~mol}}{\mathrm{~L}}}
\end{aligned}
$$

Relationship Between pH \& pOH:

$\mathbf{p H}$	$\mathbf{p O H}$	$\left[\mathbf{H}^{+}\right](\mathbf{M})$	$[\mathbf{O H}]$ $\mathbf{(M)}$
0	14	1.0	10^{-14}
2	12	0.01	10^{-12}
4	10	0.0001	10^{-10}
6	8	10^{-6}	10^{-8}
8	6	10^{-8}	10^{-6}
10	4	10^{-10}	0.0001
12	2	10^{-12}	0.01
14	0	10^{-14}	1.0

Overall, we get the important relationship:

$$
p H+p O H=-\log K_{w}=14
$$

Relationship Between pH \& DOH:
Using STOICHIOMETRY, we can calculate the pH or pOH of any solution (assuming COMPLETE DISSOCIATION).

Example:
Calculate the pH and OH Of a solution made by dissolving 5.0 g of magnesium hydroxide in 250 mL .

$$
\begin{aligned}
& \text { Solution: }
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{pOH}^{\mathrm{OH}}=-\log \left[\mathrm{OH}^{-}\right]=-\log 0.686=0.164=\mathrm{pOH} \\
& p H=14-0.164=13.84=p H
\end{aligned}
$$

$\mathrm{pH}, \mathrm{pOH},\left[\mathrm{H}_{3} \mathrm{O}^{+}\right],\left[\mathrm{OH}^{-}\right]$, and $\mathrm{Kw}:$

Here are all the relationships that you need to know:

$$
\begin{array}{ll}
\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right] & {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-\mathrm{pH}}} \\
\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right] & {[\mathrm{OH}]=10^{-\mathrm{pOH}}} \\
\mathrm{pH}+p \mathrm{pH}=14 & K w=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]
\end{array}
$$

Here is a way to put them all together:

$\mathrm{pH}, \mathrm{pOH}_{[}\left[\mathrm{H}_{3} \mathrm{O}^{+}\right],\left[\mathrm{OH}^{-}\right]$, and Kw :

Example:

Determine the of a $0.15 \mathrm{~mol} / \mathrm{L}$ solution of the strong acid $\mathrm{H}_{2} \mathrm{SO}_{4}$.

$$
\begin{aligned}
& \mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow 2 \mathrm{H}^{+}-\mathrm{SO}_{4}{ }^{2-} \\
& 0.15 \frac{\mathrm{~mol}}{\mathrm{~L}} \longrightarrow 0.3 \frac{\mathrm{~mol}}{\mathrm{~L}}
\end{aligned}
$$

$$
\mathrm{pH}=-\log 0.3=0.52
$$

$$
\begin{aligned}
& \text { log } 0.3=0.52 \\
& \text { pOL }=14-0.52=13.48
\end{aligned}
$$

