pH – The "Power" of Hydrogen

Outcomes:

- Discuss the hydronium and hydroxide concentrations in water. Include the ion product of water.
- Given and one of the values pH, [H₃O⁺], [OH⁻], find the remaining values.

Logarithms: 100 × 10

- Like <u>EXPONENTS</u>, logs are a way of working with very <u>LARGE</u> or <u>SMALL</u> numbers.
- A number's logarithm is its <u>EXPONENT</u> when <u>10</u> is the <u>BASE</u>. For example:

$$leg(10\ 000) = 4$$
 10 000 = 10⁴

 The logs of some other numbers are not <u>WHOLE</u> numbers, but the <u>PROCESS</u> is the same:

Logarithms:

 A number <u>GREATER</u> than 1 represents a <u>POSITIVE</u> log, and a number <u>LESS</u> than 1 represents a <u>NEGATIVE</u> log:

 $\frac{1}{10^3} = 0.00$

 $10^{\times} = 10^{-2.27} = 0.005'$

log(0.001) = -3log(0.000 25) = -3.602 $0.001 = 10^{-3.602}$

Try these ones...

Find the log of the following:

- 1. 1.3 x 10⁻⁵ - 4.89
- 2. $7.2 \times 10^{-11} = -10.14$
- 3. 0.0054 - 2.27

- pH scale is a <u>LINEAR</u> scale from <u>0 TO 14.</u>
- It reflects the <u>CONCENTRATION</u> of [H₃O⁺] and [OH⁻] in a solution.
- <u>PURE WATER</u> is considered to be <u>NEUTRAL</u> (<u>pH = 7</u>).
- The <u>HIGHER</u> the pH, the more <u>ALKALINE</u> (<u>BASIC</u>), the <u>LOWER</u> the pH, the more <u>ACIDIC</u> the solution.

Calculating pH:

"pH is defined as the negative logarithm of the hydronium ion concentration." $(H_3O^+ \circ R H^+)$

рН = -log[H₃O⁺]

Example:

Calculate the pH of a solution with $[H_3O^+] = 7.3 \times 10^{-5} \text{ M}$ $\rho H = -\log 7.3 \times 10^{-5} = 4.14$

We can also calculate the $[H_3O^+]$ given pH, by using the **INVERSE** of a logarithm (**10**^x)

$$[H_3O^+] = 10^{-pH}$$

Example:

Calculate the $[H_3O^+]$ if pH = 4.14 $[H_3O^+] = [0^{-4.14}] = 7.24 \times 10^{-5} \text{ mol}$

pOH, The Counterpart To pH:

Since the pH scale deals with both the $[H_3O^+]$ and $[OH^-]$, there must be a value representing pOH.

"pOH is defined as the negative logarithm of the hydroide ion concentration."

Examples:

1. Calculate the pOH of a solution with $[OH^-] = 3.0 \times 10^{-6} M$

 $pOH = -log [OH] = -log 3x10^{-6} = 5.5$

pOH, The Counterpart To pH:

We can also calculate the [OH⁻] given pOH, by using the **INVERSE** of a logarithm (**10**^x) **[OH⁻] = 10**^{-pOH}

2. Calculate the $[OH^-]$ if pOH = 3 $\begin{bmatrix} OH^- \end{bmatrix} = 10^- pOH = 10^- 3^- = 0.001 \text{ multiple}$

Relationship Between pH & pOH:

рН	рОН	[H+] (M)	[OH ⁻] (M)
0	14	1.0	10 ⁻¹⁴
2	12	0.01	10 ⁻¹²
4	10	0.0001	10 ⁻¹⁰
6	8	10 ⁻⁶	10 ⁻⁸
8	6	10 ⁻⁸	10 ⁻⁶
10	4	10 ⁻¹⁰	0.0001
12	2	10 ⁻¹²	0.01
14	0	10 ⁻¹⁴	1.0

Overall, we get the important relationship:

$$pH + pOH = -log K_w = 14$$

Relationship Between pH & pOH:

Using <u>STOICHIOMETRY</u>, we can calculate the <u>pH</u> or <u>pOH</u> of any solution (assuming <u>COMPLETE</u> <u>DISSOCIATION</u>).

Example:

Calculate the pH and pOH of a solution made by dissolving **5.0g** of magnesium hydroxide in 250mL.

pH, pOH, [H₃O⁺], [OH⁻], and Kw:

Here are all the relationships that you need to know:

pH=-log[H ₃ O+]	[H ₃ O ⁺] = 10 ^{-pH}
pOH=-log[OH⁻]	<i>[OH⁻] = 10^{-pOH}</i>
рН + рОН = 14	Kw=[H₃O⁺][OH⁻]

Here is a way to put them all together:

pH, pOH, [H₃O⁺], [OH⁻], and Kw:

