LeChatelier's Principle

Le Chatelier's Principle

If a stress is applied to a system in dynamic equilibrium, the system will adjust to relieve that stress.
http://25.media.tumblr.com/tumblr_ljgOzfditn1qdyovpo1_400.jpg

Use Le Chatelier's Principle to predict shifts in equilibrium.

Le Chatelier's Principle:

"If a stress is imposed on a system at equilibrium, the position of the equilibrium will shift in a direction that tends to reduce the stress"

In other words...

- Whatever you do to a system at equilibrium, the system will do the opposite to reduce the stress.

This statement is attributed to the French chemist HENRI LE CHATELIER

This idea has very PRACTICAL APPLICATIONS in the PRODUCTION of chemicals

- CONDITIONS are chosen so as to favor the
- PRODUCT as much as possible
ex) The Haber process

Remember: Most changes subjected to a system in equilibrium may ALTER the equilibrium POSITION but it will NOT ALTER the equilibrium CONSTANT!

Consequences of LeChatelier:

Allows us to make QUALITATIVE predictions about what will happen when the conditions of a reaction existing in equilibrium are changed

This 'CHANGE of CONDITIONS' is commonly referred to as a STRESS

Several different kinds of stresses can effect a chemical system:

- Change in TEMPERATURE
- Change in PRESSURE/change in VOLUME
- Change in CONCENTRATION
- Addition/removal of a CATALYST

Consequences of LeChatelier:

When any one of the stresses effects a system, the system will try to ACCOMMODATE the new conditions

One of three things will happen:

- More PRODUCTS will form (shift RIGHT)
- More REACTANTS will form (shift LEFT)
- The equilibrium POSITION will NOT be AFFECTED (no SHIFT)

Changes in Concentration:

"For a system to resist an action that INCREASES the equilibrium CONCENTRATION of one of the reacting SPECIES, it must do so by FAVORING the REACTION in which that species is CONSUMED"

Consider:

$$
2 \mathrm{SO}_{2(g)}+\mathrm{O}_{2(g)} \longleftrightarrow 2 \mathrm{SO}_{3(g)}
$$

- If more ${\underline{\mathbf{S O}_{\mathbf{3 (g)}}}}^{\text {is added to the reaction flask, the system will react by forming more of the REACTANTS }}$ (the reaction will proceed to the LEFT or the REVERSE REACTION will occur until a NEW EQUILIBRIUM is established)
- In the new equilibrium there will be DIFFERENT (NEW) AMOUNTS of the substances than in the original equilibrium

Changes in Concentration:

Example 1:

$$
\mathrm{CO}_{(g)}+\mathrm{H}_{2} \mathrm{O}_{(g)} \longleftrightarrow \mathrm{CO}_{2(g)}+\mathrm{H}_{2(g)}
$$

Predict the effect of adding more $\mathrm{CO}_{(\mathrm{g})}$ to a constant volume equilibrium mixture of the above gases.

The equilibrium will shift 'to the right'

Example 2:

$$
\mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \longleftrightarrow 2 \mathrm{NH}_{3(\mathrm{~g})}
$$

Predict the effect of removing $\mathrm{H}_{2(\mathrm{~g})}$ from an equilibrium mixture in a sealed flask.

The equilibrium will shift 'to the left'

Changes in Pressure:

There are 3 ways we can change pressure of a constant equilibrium mixture:

- Change the VOLUME of the container
- ADD or REMOVE a GASEOUS product or reactant
- Add an INERT GAS
- like increasing the total PRESSURE in the flask but doesn't affect the CONCENTRATIONS of the products or reactants
"When the VOLUME of on equilibrium mixture of gases is REDUCED, a net reaction occurs in the direction producing a SMALLER number of MOLES of GAS. When the volume is INCREASED, a net reaction occurs in the direction producing a LARGER number of MOLES of GASES"

Changes in Pressure:

Example 1:

$$
\mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \longleftrightarrow 2 \mathrm{NH}_{3(\mathrm{~g})}
$$

An equilibrium mixture the above is transferred from a 1.5 L flask to a 5.0L flask. In which direction does a net reaction occur to restore equilibrium?

The reaction shifts to the left

Example 2:

$$
\mathrm{PCl}_{3(\mathrm{~g})}+\mathrm{Cl}_{2(\mathrm{~g})} \longleftrightarrow \mathrm{PCl}_{5(\mathrm{~g})}
$$

Predict the shift in equilibrium position when the volume is reduced.

The reaction will shift to the right

Changes in Temperature:

The value of \underline{K} changes with TEMPERATURE
"To describe the effect of temperature change on a system at equilibrium, treat energy as a REACTANT (in an ENDOTHERMIC process) or as a PRODUCT (in an EXOTHERMIC process). Now consider the problem as one of CONCENTRATION"

Example 1:

$$
556 \mathrm{~kJ}+\mathrm{CaCO}_{3(s)} \longleftrightarrow \mathrm{CaO}_{(s)}+\mathrm{CO}_{2(g)}
$$

If the temperature of a closed system containing the given compounds is increased predict what will happen.

The reaction will shift to the right

Changes in Temperature:

Example 2:

$$
\begin{aligned}
& 2 \mathrm{SO}_{2(g)}+\mathrm{O}_{2(g)} \longleftrightarrow 2 \mathrm{SO}_{3(g)} \quad \Delta H^{\circ}=-198 \mathrm{~kJ} \\
& \text { ie: } \quad 2 \mathrm{SO}_{2(g)}+\mathrm{O}_{2(g)} \longleftrightarrow 2 \mathrm{SO}_{3(g)}+198 \mathrm{~kJ}
\end{aligned}
$$

If heat were added to the above system, predict the direction that the equilibrium position would move.

The reaction will shift to the left

Effect of a Catalyst:

A catalyst SPEEDS up BOTH the FORWARD and REVERSE reactions

- it lowers the ACTIVATION ENERGY for each
- EQUILIBRIUM is achieved more RAPIDLY
- the equilibrium amounts are UNCHANGED
- the presence of a catalyst DOES NOT CHANGE the numerical value of the EQUILIBRIUM CONSTANT
** The addition or removal of a catalyst has no effect on the position of equilibrium **

