Rates \& Stoichiometry

STOICHIOMETRY

Frustrating chemistry students since 1792

Outcomes:

- Relate the rate of formation of a product to the rate of disappearance of a reactant given experimental rate data and reaction stoichiometry.

Rates \& Stoich:

The STOICHIOMETRY of a chemical reaction can be used to determine the RATE of DECOMPOSITION of REACTANTS, OR, the rate of PRODUCTION of PRODUCTS.

Example:

Given: $\quad \mathbf{2 N O} \mathbf{2}_{(g)} \rightarrow \mathbf{2 N O}(g)+\mathbf{O}_{\mathbf{2}(\mathrm{g})}$
The graph will appear as:

Rates \& Stoich:

From the graph, it can be seen that:

- The rate of DECOMPOSITION of $\underline{N O}_{2}$ is EQUAL to the PRODUCTION of NO. The MOLAR RATIO is 1:1.
- This means as ONE MOLECULE of $\underline{N O}_{2}$ is DECOMPOSED, one molecule of $\underline{\text { NO }}$ is CREATED. \rightarrow Their rates should be EQUAL.
- The rate of PRODUCTION of OXYGEN is HALF that of the NO. The molar RATIO $\mathbf{2 : 1}$ \rightarrow The rate of PRODUCTION of NO should be DOUBLE that of the OXYGEN.

Therefore,

$$
\begin{aligned}
\text { Rate } & =-\frac{1}{2} \cdot \frac{\Delta\left[N O_{2}\right]}{\Delta t}=\frac{1}{2} \cdot \frac{\Delta[N O]}{\Delta t}=\frac{\Delta\left[O_{2}\right]}{\Delta t} \\
& =\frac{\Delta\left[\mathrm{NO}_{2}\right]}{\Delta t}=-\frac{\Delta[N 0]}{\Delta t}=\frac{-2 \Delta\left[O_{2}\right]}{\Delta t}
\end{aligned}
$$

Rates \& Stoich:

Examples:

Use the reaction $\mathbf{2 N O}_{2(g)} \rightarrow \mathbf{2 N O}(g)+\mathbf{O}_{2(g)}$ to solve the following problems:

1. Given the rate of NO_{2} decomposition to be $0.6 \mathrm{M} / \mathrm{min}$, find the rate of formation of O_{2}.

$$
0.6 \frac{m_{0} 1}{L \cdot m_{1 n}} \times \frac{1 \operatorname{mol}_{2}}{2 \mathrm{molNo}_{2}}=0.3 \frac{\mathrm{~mol}}{L \cdot \min }
$$

2. If the rate of decomposition of NO_{2} is $0.5 \mathrm{~mol} / \mathrm{Ls}$, predict the rate of production of BOTH products.

NO:

$$
\begin{aligned}
0.5 \frac{\mathrm{~mol}}{\mathrm{L.S}} \times \frac{2}{2} & =0.5 \frac{\mathrm{~mol}}{\mathrm{~L} . \mathrm{s}} \\
\times \frac{1}{2} & =0.25 \frac{\mathrm{~mol}}{\mathrm{~L} .5}
\end{aligned}
$$

Rates \& Stoich:
Try this one...
For the reaction $2 A+B \rightarrow 3 C$, what is the rate of production of C, and the rate of disappearance of B, if A is used up at a rate of $0.60 \mathrm{~mol} / \mathrm{Ls}$?

$$
\begin{aligned}
& \text { Rate C: } 0.6 \frac{\mathrm{~mol} \mathrm{~A}}{\mathrm{L.S}} \times \frac{3 \mathrm{molc}}{2 \mathrm{molA}}=0.9 \frac{\mathrm{~mol} \mathrm{C}}{\mathrm{~L} . \mathrm{S}} \\
& \text { Rat B: } 0.6 \frac{\mathrm{~mol}}{\mathrm{L.S}} \times \frac{1}{2}=0.3 \frac{\mathrm{~mol}}{\mathrm{~L} . \mathrm{S}}
\end{aligned}
$$

