Neutralization Problems

pintrest.com
1-06 Calculate the concentration or volume of an acid or base from the concentration and volume of acid or base required for neutralization.

Solving Neutralization Problems

We can solve for concentration or volume of one reactant in a neutralization reaction if we know the concentration and volume of the other reactant.

We will use stoichiometry, just like in grade 11...

Steps:

1. Write the BALANCED chemical equation.
2. Convert to MOLES.
i.e. Use the concentration and volume of the known acid/base to find the number of moles.
3. Use STOICHIOMETRY (MOLE ratios)to find the MOLES of the UNKNOWN acid or base.
4. CONVERT the answer in step 3 to the units asked for in the question.

Example Neutralization Problems

1. In the reaction of 35.0 mL of drain cleaner $(\mathrm{NaOH}), 50.08 \mathrm{~mL}$ of 0.409 M HCl must be added to neutralize the base. What is the concentration of the base?

$$
\begin{aligned}
& \underset{\substack{\mathrm{NaOH} \\
0.035 L}}{\substack{\mathrm{HCl} \\
0.409 \frac{\mathrm{~mol}}{\mathrm{~L}} \leftarrow}} \longrightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{OO} \\
& 0.050084 \times \frac{0.409 \mathrm{~mol}}{14}=0.0205 \mathrm{molHCl} \times \frac{1 \mathrm{~mol} \mathrm{NaOH}}{1 \mathrm{molHCl}}=\frac{0.0205 \mathrm{~mol} \mathrm{NaOH}}{0.035 \mathrm{~L}}=0.59 \frac{\mathrm{~mol}}{\mathrm{~L}}
\end{aligned}
$$

Example Neutralization Problems
2. Calculate the volume of $0.256 \mathrm{~mol} / \mathrm{LBa}(\mathrm{OH})_{2}$ that must be added to neutralize 46 mL of

$$
\begin{aligned}
& 0.407 \mathrm{~mol} / \mathrm{L} \mathrm{HClO}_{4} \text {. } \\
& 0.407 \mathrm{~mol} / \mathrm{L} \mathrm{HClO}_{4} \text {. } \\
& 2 \mathrm{HClO}_{4}+\mathrm{Ba}(\mathrm{OH})_{2} \rightarrow \mathrm{Ba}\left(\mathrm{ClO}_{4}\right)_{2}+2 \mathrm{H}_{2} \mathrm{O} \\
& 0.046 \mathrm{~L} \quad 0.256 \frac{\mathrm{~mol}}{\mathrm{~L}} \\
& 0.407 \frac{\mathrm{~mol}}{\mathrm{~L}} \quad L=\text { ? } \\
& 0.046 \mathrm{~L} \times \frac{0.407 \mathrm{~mol}}{L L}=0.0187 \mathrm{~mol} \mathrm{HClO} 4 \times \frac{1 \mathrm{~mol} \mathrm{Ba}(\mathrm{OH})_{2}}{2 \mathrm{~mol} \mathrm{HClO}}=0.00936 \mathrm{~mol} \mathrm{Ba}(\mathrm{Cot})_{2} \times \frac{\mathrm{l}}{\mathrm{~L}} \\
& \mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{~N}_{\mathrm{K}}^{4}+{ }^{+}+\mathrm{OH}^{-}=0.0365 \mathrm{~L} \\
& \mathrm{NH}_{4} \mathrm{OH}=36.5 \mathrm{~mL}
\end{aligned}
$$

Neutralization Problems

Try these ones...
$\mathrm{H}_{2} \mathrm{SO}_{4}$

1. How many milliliters of 0.1 M sulfuric acid are required to neutralize 10.0 g of sodium hydroxide?

$$
\mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{NaOH} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}
$$

$$
10.0 \mathrm{~g} \times \frac{1 \mathrm{~mol}}{40.01 \mathrm{~g}}=0.25 \mathrm{~mol} \mathrm{NaOl} \times \frac{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{mSon}_{4}}{2 \mathrm{~mol} \mathrm{NaOlt}}=0.125 \mathrm{~mol} \mathrm{H} \mathrm{H}_{2} \mathrm{SO}_{4} \times \frac{1 \mathrm{~L}}{0.1 \mathrm{~mol}}=\begin{aligned}
& 1.25 \mathrm{~L} \\
& \text { OR } \\
& 1250 \mathrm{~mL}
\end{aligned}
$$

Neutralization Problems
Try these ones...
2. Calculate the molarity of a 47 mL solution of magnesium hydroxide if it takes 56.2 mL of 0.25 M phosphoric acid to neutralize.

$$
3 \mathrm{Mg}(\mathrm{OH})_{2}+2 \mathrm{H}_{3} \mathrm{PO}_{4} \rightarrow \mathrm{My}_{3}\left(\mathrm{PO}_{4}\right)_{2}+6 \mathrm{H}_{2} \mathrm{O}
$$

$$
0.25 \frac{\mathrm{~mol}}{\mathrm{~L}} \times 0.0562 \mathrm{~L}=0.0141 \mathrm{~mol} \mathrm{H}_{3} \mathrm{PO}_{4} \times \frac{3 \mathrm{~mol} \mathrm{Hg}(\mathrm{OH})_{2}}{2 \mathrm{~mol} \mathrm{H}_{3} \mathrm{PO}_{4}}=\frac{0.21 \mathrm{~mol} \mathrm{mg}(\mathrm{OH})_{2}}{0.047 \mathrm{~L}}=0.45 \mathrm{~mol}
$$

