Naming Compounds

Dangers:

- Death by inhalation
- Corrodes metals
- Bloating & nausea
- Electrical short-circuit
- Tissue damage & burns
- Soil erosion
- Brake failure
- Disaster & destruction
 Fire suppression

Uses:

- Animal research
- Abortion clinics
- Nuclear plants
- Chemical warfare Performance enhancers
- Torture
- Cult rituals

Places:

- Cancerous tumors
- Cleaning solvents
- Prisons & hospitals
- Acid rain
- Pharmaceuticals Lakes & streams
- Industrial waste
- Baby food & beer

Ban Dihydrogen Monoxide DHMO.org

Outcome:

2-03 Write formulas and names for binary ionic compounds.

2-04 Write formulas and names for covalent compounds.

Elemental Molecules:

- You are responsible for knowing the **<u>DIATOMIC</u>** molecules.
- DIATOMIC Molecules contain <u>2 ATOMS</u> of the <u>SAME ELEMENT</u>, and are <u>NEVER</u> found as <u>SINGLE ATOMS</u>.

```
Hydrogen (H_2)

Oxygen (O_2)

Fluorine (F_2)

Bromine (Br_2)

Iodine (I_2)

Nitrogen (N_2)

Chlorine (CI_2)

Astatine (At_2). \rightarrow Another diatomic!
```

NOTE:

Some elements can also exist as **<u>POLYATOMIC</u>** <u>**MOLECULES**</u> like S_8 (*Sulfur*) and P_4 (*Phosphorus*)

Naming Compounds

We use a standard system of naming (<u>IUPAC</u> – International Union of Pure and Applied Chemistry) to name all chemical compounds.

There is a different way to name chemicals depending on whether they are *ionic* or *covalent*

Covalent Bonds	Ionic Bonds
- Two NON-METALS	- A METAL and a NON-METAL
- Is a SHARING of electrons	- Electrons are TRANSFERRED
Ex) CCI ₄ , CO ₂ , NO ₂	Ex) <i>NaCl, CaS, MgH</i> ₂

Naming COVALENT Compounds

Writing COVALENT names from formulas:

 We use a <u>PREFIX</u> system of <u>NOMENCLATURE</u> to name covalent compounds to show the number of each kind of atom:

<i>mono</i> = 1	<i>hexa</i> = 6
di = 2	hepta = 7
<i>tri</i> = 3	octa = 8
tetra = 4	<i>nona</i> = 9
penta = 5	deca = 10

Rules:

- The 1st element is named in <u>FULL</u>, using <u>PREFIXES</u> only when there <u>MORE</u> than <u>2 ATOMS</u> (mono is understood).
- The <u>SECOND</u> element is <u>SHORTENED</u> and given an "<u>IDE</u>" suffix, and the appropriate <u>PREFIX</u>.

Naming COVALENT Compounds

Writing COVALENT names from formulas:

Examples: <u>co</u>→ Carbon monoxide CO2 → Carbon dioxide $SF_6 \rightarrow$ Sulphur hexalluoride N2O5→ dinitrogen pentoxide NO3 → Nitrogen triowide

Formulas of COVALENT compounds

To find the **FORMULA** of a **COVALENT** compound, simply write the **SYMBOL** and the **NUMBER** of each atom (**SUBSCRIPT**) in the order that they are in the name.

Examples:

Sulphur dioxide \rightarrow

Trinitrogen heptoxide \rightarrow

Dihydrogen Monoxide \rightarrow

HaD

Naming COVALENT compounds

Try these ones...

Formula	Name
PBr ₃	
S ₂ O ₂	
N ₃ O ₇	

Name	Formula
Dinitrogen trioxide	
Carbon tetrachloride	
Diphosphorus trisulphide	

Naming BINARY IONIC Compounds

Writing IONIC names from formulas:

When naming any ionic compound the name of the <u>CATION</u> (<u>POSITIVE</u> ion) is written first, followed by the name of the <u>ANION</u> (<u>NEGATIVE</u> ion).

→ See "<u>COMMON</u> <u>ION</u>" Side of the <u>PERIODIC</u> <u>TABLE</u>.

Rules:

- Name the <u>CATION</u> by writing the <u>FULL NAME</u> of the <u>METALLIC</u> element.
- Name the <u>ANION</u> by <u>ABBREVIATING</u> the full name of the <u>NON-</u> <u>METALLIC</u> element and adding the suffix "<u>IDE</u>".

→ **NO PREFIXES!!!!!** They are not needed!

Naming BINARY IONIC Compounds

Examples: NaCl→ Sodium Chloride

$$ZnBr_2 \rightarrow Zinc Bromide$$

 $Al_2O_3 \rightarrow Aluminum Oxide$

Formulas of BINARY IONIC Compounds

- Write the chemical <u>SYMBOL</u> of each element present.
- Use your periodic table to obtain the <u>CHARGES</u> on each atom involved in the ionic bond.
- <u>COMBINE</u> the atoms so the <u>CHARGES</u> <u>NEUTRALIZE</u> and the resulting compound is <u>NEUTRAL</u>. (*criss-cross method or lowest common multiple*)

Examples:

Magnesium chloride:

- *Mg* and *Cl*
- Mg has a charge of 2+, Cl has a charge of 1-.
- When <u>TWO</u> Cl⁻ ions combine with <u>ONE</u> Mg²⁺ ion, the overall charge is <u>ZERO</u>, therefore MgCl₂ is a <u>NEUTRAL</u> compound.

Formulas of IONIC compounds

More Examples:

Write formulas for the following binary ionic compounds

Lithium Phosphide

 $\begin{array}{c} L_{1}^{+} \\ +3 \\ +1 \end{array}$

Strontium Nitride

 Sr_2N_3

 f_{2}

LizP

Aluminum Oxide

A13+ 02-12 +3

Naming IONIC compounds

Try these ones...

Formula	Name
KBr	Potassium Bromidu
CaCl ₂	Calcium Chloride
SrCl ₂	Stronburn Chloride
Li ₂ O	L'Hium oxide.

Name	Formula	
Beryllium phosphide $B_{\ell}^{2+} \rho^{3-}$	Be3P2	
Aluminum sulphide $A^{3*} 5^{2-}$	Al253	
Cadmium oxide		6mi
Strontium iodide $5r^{24}$ T	SII2	

Naming With Transition Metals

- You may have noticed that some ions have <u>ROMAN NUMERALS</u> after their names. These indicate different <u>OXIDATION STATES</u> – more on this in grade 12...
- To put it simply, some metals can arranging their <u>ELECTRONS</u> in different ways to become stable, which results in form <u>TWO</u> or <u>MORE</u> possible <u>IONS</u> (ex. iron → Fe²⁺ or Fe³⁺)
- These elements are called the <u>TRANSITION METALS</u> and can be found in the <u>CENTER</u> of the periodic table.

How do we know which ion to use???

To show which ion is present we use **<u>ROMAN</u> <u>NUMERALS</u>** in **<u>BRACKETS</u>**:

Example:

 $Fe^{2+} \rightarrow Icon(II)$ $Fe^{3+} \rightarrow Icon(II)$

Naming IONIC Compounds with Transition Metals

We use the same rules as with binary ionic compounds, but we include the **ROMAN NUMERALS** to identify the **CHARGE** on the **METAL**.

Examples:

FeCl₂

2+ 2-

FeO

2+ 2-

IRON (11) Chloride IRON (11) Oulde

IRON(III) Oxi de

Name the following ionic compounds with transition metals

Pk	DCl ₂
27	2-

4+ 4-

PbCl₄

1-1-

1-

Lead (N) Chloride

Lead (11) Chloride

 Cr_2O_3

(momium(III) oxide

Formulas of Compounds with Transition Metals:

This follows the same rules as **<u>BINARY</u> <u>IONIC</u>** compounds from the previous lesson. Be sure to use the <u>**CORRECT**</u> **<u>CHARGE</u>** in the <u>**POSITIVE**</u> ion.

Example:

Iron (II) chloride

Fo, Cl2

Fet CV

Gold (III) sulphide

Au 3+ 52-

Aus S3

Try these ones...

Write formulas for the following ionic compounds with transition metals

Cadmium (II) Oxide

CdO(d2+ 02-

Manganese (III) sulphide

Mnz. 53

Mercury (II) Nitride

Hg N3-

Hg3 N2

Extension: Naming With Complex Ions

Complex ions are <u>GROUPS</u> of atoms made <u>STABLE</u> by <u>SHARING</u> <u>ELECTRONS</u>, which then become even more <u>STABLE</u> by <u>GAINING</u> or <u>LOSING ELECTRONS</u>.

> Ex) Nitrate $\rightarrow NO_3^-$ Ammonium $\rightarrow NH_4^+$

Unlike <u>NEUTRAL</u> molecules, complex ions carry an <u>ELECTRIC</u> <u>CHARGE</u> and do not exist by themselves.

We follow the naming rules for **<u>BINARY</u> <u>IONIC</u>** compounds, but we treat the complex ion as a single ion.

Naming with Complex Ions

The **<u>COMPLEX</u>** part(s) of the ion are **<u>NAMED</u>** according to the "ion" side of the periodic table.

Note:

You may see the following names for complex ions:

- → Bicarbonate = HCO₃⁻ (<u>HYDROGEN</u> <u>CARBONATE</u>)
- → Bisulfate = HSO₄ (<u>HYDROGEN SULFATE</u>)

Ex) Baking soda is called sodium bicarbonate, but it can also be called sodium hydrogen carbonate.

Examples:

 $NaNO_3$

ZnClO₃

 $Pb(SO_4)_2$

Try these ones...

Write the names for the following ionic compounds that contain complex ions

 $(NH_4)_2CI$

NaHCO₃

 $Mg(C_2H_3O_2)_2$

Formulas of Complex Ions

When placing a <u>SUBSCRIPT</u> number after the <u>FORMULAS</u> for a complex ion, the <u>GROUP</u> is first <u>BRACKETED</u>.

Examples:

Barium sulphate

Aluminum hydroxide

Iron (III) sulphate

Write formulas for the following ionic compounds that contain complex ions

Copper (I) phosphate

Barium bromate

Magnesium Hydrogen Sulphate