ICE Problems

Solve problems involving equilibrium constants.

Equilibrium Problem Type 1:

We are given INITIAL CONCENTRATIONS (usually reactants), and the EQUILIBRIUM CONCENTRATION of a PRODUCT.

Example:

For the reaction, $\mathbf{H}_{2(g)}+\mathrm{F}_{2(g)} \longleftrightarrow \mathbf{2 H} F_{(g)}$
1.00 moles of H_{2} and 1.00 moles of F_{2} are sealed in a 1.0 L flask at $150^{\circ} \mathrm{C}$, and allowed to react. At Equilibrium, 1.32 moles of HF are present. Find $\mathrm{K}_{\text {eq }}$.

Equilibrium Problem Type 2:

We are given INITIAL CONCENTRATIONS and $\underline{K}_{\text {eq }}$, and must calculate the EQUILIBRIUM CONCENTRATIONS of reactants and/or products.

Example:

For the reaction, $\mathbf{N}_{2(g)}+\mathbf{O}_{\mathbf{2 (g)}} \longleftrightarrow \mathbf{2 N O} \mathbf{O}_{(g)}$
The equilibrium constant is 6.76 . If 6.0 moles of N_{2} and O_{2} are placed in a 1.0 L container, find the concentrations of all reactants and products at equilibrium.

Try these ones...

1. Given the reaction $\mathbf{2 S O}_{\mathbf{2 (g)}}+\mathbf{O}_{\mathbf{2 (g)}} \longleftrightarrow \mathbf{2 S O}_{\mathbf{3 (g)}}$, if initially 2.00 mol of $\mathrm{SO}_{2}, 1.00 \mathrm{~mol} \mathrm{O}$, and 0.100 $\mathrm{mol} \mathrm{SO}_{3}$ are all mixed in a 15.0 L container, and at equilibrium, there are 0.200 mol of O_{2} left, calculate $\mathrm{K}_{\text {eq. }}$.

Try these ones...

2. Given the reaction, $\mathbf{N}_{2(g)}+\mathbf{O}_{2(g)} \longleftrightarrow \mathbf{2 N O} \mathbf{N O}_{(g) \text {. }} 0.500 \mathrm{~mol} \mathrm{~N}_{2}$ and $0.500 \mathrm{~mol} \mathrm{O} \mathrm{O}_{2}$ are placed in a 1 L flask at $430^{\circ} \mathrm{C}$ If Keq is 54.3 at this temperature, find the concentrations of all species in the system at equilibrium.

The Reaction Quotient (Q)

- Allows us to determine WHETHER a system is at EQUILIBRIUM, and which reaction is FAVOURED.
- Uses the equilibrium law, but with concentrations determined in EXPERIMENT.
- Instead of Keq we use Q.
- We then compare $\underline{\mathbf{Q}}$ to the value of $\underline{K e q}$.

1. If $\mathrm{Q}=\mathrm{Keq}$:

- The system is at EQUILIBRIUM

The Reaction Quotient (Q)

2. If $\mathrm{Q}>$ Keq:

- The system is NOT at EQUILIBRIUM (more PRODUCTS)
- The REVERSE reaction will be FAVOURED to bring the
- reactant-product RATIO EQUAL to Keq

3. If $\mathrm{Q}<K e q$:

- The system is NOT at EQUILIBRIUM (more REACTANTS)
- The FORWARD reaction will be FAVOURED to bring the reactant-product RATIO EQUAL to Keq

The Reaction Quotient (Q)

Example:

For the reaction, $\mathbf{N}_{\mathbf{2 (g)}}+\mathbf{O}_{\mathbf{2 (g)}} \leftarrow \mathbf{2 N O}_{(\mathrm{g})}$ It was found that 8.5 moles of $\mathrm{N} 2,11$ moles of O 2 and 2.20 moles of NO were in a 5.00 L container. If $\mathrm{Keq}=0.035$,
a) Is the system at equilibrium?
b) If it is not at Equilibrium, which reaction is favoured?
c) Which concentrations are increasing and decreasing?

