Freezing and Melting

http://www.800mainstreet.com/08/0008-001-state-changes.html

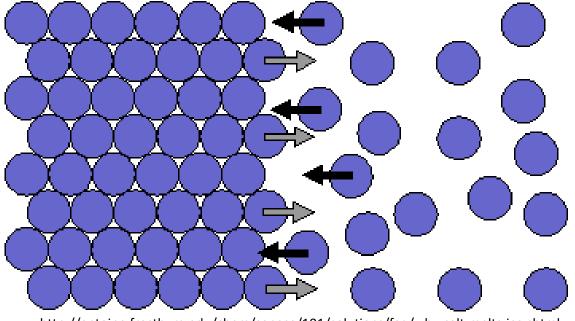
Outcomes:

- Explain the process of freezing/melting, and sublimation/ deposition in terms of KMT. Include: Freezing point
- Use KMT to describe the process of evaporation/ condensation. *Include: IMF's, random motion, volatility, dynamic equilibrium.*

Vocabulary:

Endothermic

• **<u>ABSORPTION</u>** of <u>HEAT</u> (<u>ENERGY</u>) by a substance or reaction.


Exothermic

• **<u>RELEASE</u>** of <u>HEAT</u> (<u>ENERGY</u>) by a substance or reaction

Freezing/Melting Point:

- *Temperature* at which <u>LIQUID</u> changes to <u>SOLID</u>. (water \rightarrow 0 °C, diamond \rightarrow 3700 °C)
 - Freezing point of a liquid is the <u>same</u> as the melting point of a solid.
- At this temperature, liquid and solid are in **EQUILIBRIUM**:

Solid $\leftarrow \rightarrow$ Liquid

http://antoine.frostburg.edu/chem/senese/101/solutions/faq/why-salt-melts-ice.shtml

Freezing / Melting Point:

- At the melting point, the particles have enough <u>KINETIC ENERGY</u> to overcome <u>INTERACTIONS</u> that hold them in place as a <u>SOLID</u>.
 - IONIC solids generally have high <u>MELTING POINTS</u> (NaCl → 801°C)
 - **<u>COVALENT</u>** solids are lower (HCl \rightarrow -112 °C)
- Not all solids <u>MELT</u> (ex. wood)
- Melting/Freezing points are <u>PHYSICAL</u> properties of <u>PURE</u> substances.

Boiling/Condensation Point:

- The <u>TEMPERATURE</u> at which a substance changes between <u>LIQUID</u> and <u>GAS</u>.
 - Boiling and Condensing happen at the same temperature!
- At this temperature, in a <u>SEALED</u> <u>CONTAINER</u>, liquid and gas are in <u>dynamic equilibrium</u>

Liquid $\leftarrow \rightarrow$ Gas

What is "Normal":

Normal Melting/Freezing Point:

- Temperature at which a solid changes to a liquid (or vice versa) at <u>STANDARD</u> <u>PRESSURE</u> → *1atm (101.3 kPa)*
- Ex) the normal melting point of ice is <u>0°C</u>, but we can get ice to melt at different temps!

Normal Boiling Point:

- Temperature at which a liquid changes to a gas at <u>STANDARD</u> <u>PRESSURE</u> → 1atm (101.3 kPa)
- Ex) the normal boiling point of water is <u>100°C</u>, but we can get water to boil at different temps!

Changes of State Review:

Melting	 ENDOTHERMIC, solid → liquid
Freezing	- <u>EXOTHERMIC</u> , liquid → Solid
Condensation	- <u>EXOTHERMIC</u> , gas → liquid
Vaporization	- <u>ENDOTHERMIC</u> , Liquid > Gas

There are two new changes of state:

SUBLIMATION

- <u>SOLID</u> changing to a <u>GAS</u>.

- ENDOTHERMIC

ex) dry ice, ice cubes in freezer, moth balls

DEPOSITION

- GAS changing to a SOLID

- EXOTHERMIC

ex) Frost on a car windshield

Changes of State

More on Changes of State:

- Solids have <u>VAPOR PRESSURES</u> just like liquids, only usually much, much <u>LOWER</u>.
- Solids with <u>HIGH VAPOUR PRESSURES</u> have <u>WEAK INTERMOLECULAR</u> FORCES, and <u>SUBLIME</u> relatively <u>EASILY</u>. (*solid air fresheners)*
- We see sublimation and deposition in winter:
 - Snow can sublimate even below 0 °C
 - Water vapour undergoes deposition to become snow and frost

A *heating graph* is a <u>Temp vs. Time</u> graph that shows a <u>CHANGE</u> IN <u>STATE</u> from solid to liquid to gas (or part thereof).

- Flat spots show the *changes of state.*
- Slopes show a specific *phase (state)*

A **cooling graph** is the same as a heating graph, but at time 0 min, you start with a gas, then condense to liquid, then freeze to a solid (the **<u>SLOPE</u>** is **<u>REVERSED</u>**).

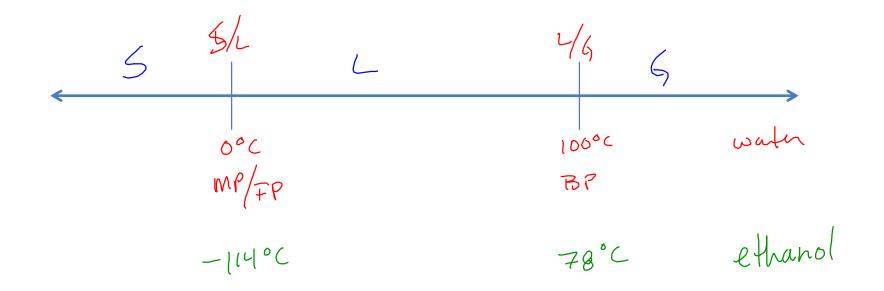
Heating Curves Applet Questions

1. Why are there regions where the temperature does not change with time, despite the fact that heat is being added to the system?

- 2. What is the melting <u>**point</u>** of the substance? $\sim 60^{\circ}$ </u>
- 3. What is the boiling **point** of the substance? $\sim 145^{\circ}$
- 4. How does the heating curve for a 400 W heating rate compare with that obtained using a 200 W heating rate? (Be quantitative in your answer.)
- 5. Do the melting point and boiling <u>point</u> depend upon the heating rate?

Why is the graph level at the melting/boiling points?

 \rightarrow The substance exists in both states so the two states are at equilibrium with each other.


 \rightarrow The average energy does not change because any added energy is used to overcome IMF's

Ex) When water is boiled:

- The molecules gaining the energy escape to the gas phase, leaving the slower molecules behind.
- This keeps the average energy of the remaining molecules constant, as any molecules that gain energy escape.

You can imagine changes of state to be on a number line:

Ex) For water at sea level...

