Equilibrium of Water

Outcomes:

- Discuss the hydronium and hydroxide concentrations in water. Include the ion product of water.
- Given and one of the values pH, [H₃O⁺], [OH⁻], find the remaining values.

Equilibrium of Water:

Self-Ionization (Autoionization) of Water:

- Experiments have shown that <u>PURE</u> WATER can <u>CONDUCT</u> electricity <u>VERY</u> <u>SLIGHTLY</u>.
- Water can act as a <u>PROTON</u> <u>DONOR</u> and <u>ACCEPTOR</u> for <u>ITSELF</u>.
- When a <u>PROTON</u> is <u>TRANSFERRED</u> from one water molecule to another, the result is <u>H₃O⁺</u> and <u>OH⁻</u>.

i.e.)
$$\begin{array}{c} \textcircled{} & \textcircled{} & \textcircled{} \\ \hline & \swarrow \\ \hline & 2H_2O_{(I)} \leftarrow \rightarrow H_3O^+_{(aq)} + OH^-_{(aq)} \end{array}$$

This equilibrium can also be written as:

$$H_2O_{(l)} \leftrightarrow H^+_{(aq)} + OH^-_{(aq)}$$

Equilibrium of Water:

- In the above equilibrium, water acts as <u>BOTH</u> an <u>ACID</u> and a <u>BASE</u> → <u>AMPHOTERIC</u>
- Very few water molecule swill **<u>AUTOIONIZE</u>** (2 in 1 billion).
- The water equilibrium will obey the LAW of MASS ACTION, so:

$$K = \frac{[H_{(aq)}^+][OH_{(aq)}^-]}{[H_2O_{(l)}]}$$

• Recall that <u>LIQUIDS</u> do <u>NOT</u> appear in an equilibrium law, so:

$$K_{aq} = [H^+_{(aq)}][OH^-_{(aq)}]$$

 It has been determined that at 25°C, [H⁺] and [OH⁻] are <u>1x10⁻⁷ M</u>. Therefore,

$$K_{e} = [1x10^{-7}][1x10^{-7}] = 1.0x10^{-14}$$

This value is called the ION PRODUCT CONSTANT for WATER (Kw)

Kw & Temperature:

Note: <u>K</u>, will change with <u>TEMPERATURE</u>!

Effect of Temperature on K_w

$$H_2O_{(l)}$$
 + 56.4kJ $\leftarrow \rightarrow H^+_{(aq)}$ + $OH^-_{(aq)}$

- If we increase the <u>TEMPERATURE</u> → reaction shifts <u>RIGHT</u> to reduce excess <u>HEAT</u>.
 - [H⁺] and [OH⁻] will increase
 - ant H₂Oj will decrease
- If we increase temperature to 60°C, [H⁺] and [OH⁻] become 3.0x10⁻² M, therefore:

 $K = [3.0x10^{-2}][3.0x10^{-2}] = 9.55x10^{-4}$

Note:

 \rightarrow Always assume temperature is 25°C, unless otherwise told, so $K_w = 1.0 \times 10^{-14}$

Not all solutions are neutral:

Le Chatelier's Principle applies to acidic/basic solutions... Addition of [H⁺] or [OH⁻] will <u>SHIFT</u> the equilibrium, <u>DECREASING</u> the concentration of the <u>OTHER ION</u>.

- i.e. If [H⁺] increases, [OH⁻] will decrease (and vice versa)
- **1.** Neutral Solutions:
 - [H⁺] and [OH⁻] are equal, (1x10⁻⁷ M)

2. Acidic Solutions:

- [H⁺] is greater than [OH⁻] ([H⁺] > 1.0x10⁻⁷ M)
- What would happen to [H⁺] and [OH⁻] if HCl is added to water?

$$H_{2}O_{(I)} \leftrightarrow H^{+}_{(aq)} + OH^{-}_{(aq)}$$
$$HCl_{(g)} \leftrightarrow H^{+}_{(aq)} + Cl^{-}_{(aq)}$$

 \rightarrow [H⁺] increases (shifts to the left), so [OH⁻] decreases. Therefore pH will decrease.

Not all solutions are neutral:

- **3.** Basic Solutions:
 - [OH⁻] is greater than [H⁺]. ([OH⁻] > 1.0x10⁻⁷ M)
 - What would happen to [H⁺] and [OH⁻] if NaOH is added to water?

 $H_2O_{(I)} \xleftarrow{} H^+_{(aq)} + OH^-_{(aq)}$ $NaOH_{(g)} \xleftarrow{} Na^+_{(aq)} + OH^-_{(aq)}$ $\rightarrow [OH^-] \text{ increases (shifts to the left), so [H^+] decreases. Therefore pH will increase.}$

- If we know the concentration of either [H⁺] or [OH⁻], we can use the mass action expression and K_w to find the other concentration.
- We can use these concentrations to determine whether a solution is acidic or basic.

Example:

551 12

If $(H^+) = 1.0 \times 10^{-5}$ M, find the [OH⁻] and determine whether the solution is acidic, basic, or neutral.

$$k_{W} = [H_{3}O^{*}][OH^{-}]$$

$$|x_{1}O^{-14} = (|x_{1}O^{-5})[OH^{-}]$$

$$(OH^{-}] = |x_{1}O^{-9} \frac{m_{3}I}{L}$$

$$(OH^{-}] = |x_{1}O^{-9} \frac{m_{3}I}{L}$$

$$(H^{+}] > [OH^{-}]$$

$$[H^{+}] > |x_{1}O^{-7} \frac{m_{0}I}{L}$$

2.

 If the [OH⁻] is 1.0 x 10⁻³ M, what is the [H⁺] in the solution, and determine whether the solution is acidic, basic, or neutral.

$$\begin{cases} \psi = \left[H_{3}O^{4} \right] \left[OH^{-3} \right] \\ [\times 10^{-14} = \left[H_{3}O^{+} \right] \left(1 \times 10^{-3} \right) \\ [H_{3}O^{+}] = \left[\times 10^{-11} \frac{\text{Mus}}{\text{L}} \right] \\ [H_{3}O^{+}] = \left[\times 10^{-11} \frac{\text{Mus}}{\text{L}} \right] \\ \end{cases}$$
What is the [H⁺] in a solution of 0.030 M NaOH? Determine whether the solution is acidic or basic.

$$M_{3} \left(OH^{-3} \right)_{x} \longrightarrow M_{3}^{2x} + 20H^{-1} \end{cases}$$

$$0.03 \frac{mul}{2} \qquad 0.06 \frac{mul}{2} \qquad ... Sol 12$$

$$k_{UV} = [H_{3}0^{\dagger}][OH^{-}] \qquad ... Sol 12$$

$$|x_{10}^{-H} = [H_{3}0^{\dagger}](O.06)$$

$$[H_{3}0^{\dagger}] = 1.67 \times 10^{-13} \frac{mol}{L}$$