Charles' Law

http://www.middleschoolchemistry.com/atomsworld/2012/09/not-just-hot-air/

Outcomes:

- Experiment to develop the relationship between volume and temperature of a gas using visual, numerical and graphical representations. Include: contribution of Charles, absolute zero, Kelvin Scale

Jacques Charles...

Found that there is a relationship between TEMPERATURE and the VOLUME that a gas occupies.

- He did so by TRAPPING a gas sample in a CYLINDER with a moveable PISTON.
- He immersed the cylinder in a WATER BATH and varied the TEMPERATURE.
- He found that as the TEMPERATURE was INCREASED, so did the VOLUME. (see overhead)
- Note: AMOUNT of gas and PRESSURE were held constant.

Charles Law:

If you look at the graph, you will see that we get a STRAIGHT line of POSITIVE SLOPE.
\rightarrow Indicates that volume is DIRECTLY PROPORTIONAL to temperature.

Charles Law:

Charles was not able to achieve very low temperatures, but the line could be extended to see what would happen. (see second graph)

- Notice that each line, when extended, ends up at the same value...about $\underline{-273^{\circ} \mathrm{C}}$! \rightarrow more to come

Absolute Zero:

When the lines are EXTRAPOLATED downward, it meets the horizontal axis at $-273^{\circ} \mathrm{C}$.

- So, if the gas did not LIQUEFY, its volume would become ZERO at $\mathbf{- 2 7 3 ^ { \circ }} \mathbf{C}$.
- This temperature is thought to be the LOWEST POSSIBLE temperature, called ABSOLUTE ZERO.

The Kelvin Scale:

Lord Kelvin (William Thompson) reasoned that at absolute zero, all MOLECULAR MOTION STOPPED.

- He then devised a NEW temperature SCALE, that STARTED at absolute zero (actually $-273.15^{\circ} \mathrm{C}$)
- On this scale, absolute zero is $\emptyset \mathbf{K}$ (no ${ }^{\circ}$ symbol).
- The advantage of this scale is that there are no NEGATIVE numbers, this helps with Charles' law.

Absolute Zero

Thermometers compare Fahrenheit, Celsius, and Kelvin scales

The Kelvin Scale:

Conversion:

$$
{ }^{\circ} \mathrm{C}=K-273
$$

OR

$$
K={ }^{\circ} \mathrm{C}+273
$$

**remember that Kelvin is always better than Celsius!

Ex) Convert the following:

1. $25^{\circ} \mathrm{C}$ to Kelvin

$$
25+273=298 K
$$

2. 50 K to Celsius

$$
50 \mathrm{~K}-273=-223^{\circ} \mathrm{C}
$$

"to measure is to know - if you cannot measure it, you cannot improve it" - Lord Kelvin

Charles' Law (Finally)...

"The volume of a given gas varies directly with temperature in Kelvin, if the pressure and amount of gas are constant."

This means that the RATIO of VOLUME and TEMPERATURE remains CONSTANT, so:

$$
\frac{V_{1}}{T_{1}}=k \quad \text { and } \quad \frac{V_{2}}{T_{2}}=k
$$

Therefore:

$$
\frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}} \text { Charles'law }
$$

Where, $\mathrm{V}=\underline{\text { VOLUME }}$ \& $\mathrm{T}=\underline{\text { TEMPERATURE(IN K }}$)

Charles' Law Examples...

Examples:

If the temperature of 6.00 L of a gas at $25.0^{\circ} \mathrm{C}$ is increased to $227^{\circ} \mathrm{C}$, determine the volume at the new temperature.

$$
\begin{gathered}
\frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}} \\
\frac{6 \mathrm{~L}}{298 \mathrm{~K}}=\frac{V_{2}}{500 \mathrm{~K}} \\
\frac{(6 \mathrm{~L})(500 \mathrm{~K})}{298 \mathrm{~K}}=V_{2} \\
V_{2}=10.07 \mathrm{~L}
\end{gathered}
$$

$$
T \uparrow \vee \uparrow
$$

$$
6.00 \mathrm{~L} \times \frac{500 \mathrm{~K}}{298 \mathrm{~K}}=10.07 \mathrm{~L}
$$

Charles' Law Examples...

Examples:

$$
V_{1}=24 \mathrm{~L}
$$

If the volume of a gas at $-73.0^{\circ} \mathrm{C}$ is doubled to 48.0 L , calculate the final temperature in ${ }^{\circ} \mathrm{C}$.

$$
\begin{aligned}
\frac{V_{1}}{T_{1}} & =\frac{V_{2}}{T_{2}} \\
\frac{24 \mathrm{~L}}{200 \mathrm{~K}} & =\frac{48 \mathrm{~L}}{T_{2}} \\
T_{2} & =\frac{(48 \mathrm{~L})(200 \mathrm{~K})}{(24 \mathrm{~L})} \\
T_{2} & =400 \mathrm{~K}-273=127^{\circ} \mathrm{C}
\end{aligned}
$$

$U \uparrow T \uparrow$

$$
200 \mathrm{~K} \times \frac{48 \mathrm{~L}}{24 \mathrm{~L}}=400 \mathrm{~K}
$$

Charles' Law Examples...

Try these ones...
A gas inside a cylinder with a movable piston is heated to $315^{\circ} \mathrm{C}$. The volume of gas in the cylinder is 0.30 L at $25^{\circ} \mathrm{C}$. What is the final volume when the temperature is $315^{\circ} \mathrm{C}$?

$$
\begin{aligned}
\frac{298 K}{V_{1}} & =\frac{V_{2}}{T_{2}} \\
\frac{0.3 \mathrm{~L}}{298 \mathrm{~K}} & =\frac{V_{2}}{588 \mathrm{~K}} \\
V_{2} & =\frac{(0.3 \mathrm{~L})(588 \mathrm{~K})}{298 \mathrm{~K}} \\
V_{2} & =0.59 \mathrm{~L}
\end{aligned}
$$

$T \uparrow V \uparrow$

$$
0.3 L \times \frac{588 K}{298 K}=0.59 L
$$

Charles' Law Examples...

Try these ones...

$$
\begin{aligned}
& T_{1} \\
& 283 \mathrm{~K}
\end{aligned}
$$

On a cool morning $\left(10.0^{\circ} \mathrm{C}\right)$, a group of hot air balloonists start filling their balloon with air. After the balloon is three fourths fill, they turn on the propane burner to heat the air. At what temperature (in ${ }^{\circ} \mathrm{C}$) will the air completely fill the balloon (capacity is $1700 \mathrm{~m}^{3}$). Assume pressure and amount of gas are constant.

$$
\begin{aligned}
& 1700 \mathrm{~m}^{3} \times \frac{3}{4}=1275 \mathrm{~m}^{3} \\
& \frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}} \\
& \frac{1275 \mathrm{~m}^{2}}{283 \mathrm{~K}}=\frac{1700 \mathrm{~m}^{3}}{T_{2}} \\
& T_{2}=\frac{\left(1700 \mathrm{~m}^{3}\right)(283 \mathrm{~K})}{1275 \mathrm{~m}^{3}}=377.3 \mathrm{~K}-273=104^{\circ} \mathrm{C}
\end{aligned}
$$

