Non-Uniform Motion

The sudden realization that the 4.5 Hemi might just be a tad too much power for you, the pup, the kids, the groceries and the soccer team.

Outcomes:

S2-3-03 Analyze the relationships among velocity, time and acceleration for an object accelerating at a constant rate.

Non-Uniform Motion...

Average velocity:

- Velocity of an object over an INTERVAL of time
- SLOPE of a d-t graph

Ex) You drive to Brandon (200km) in 2 hours. What is your average velocity?

$$
V_{\text {avg }}=\frac{\Delta d}{\Delta t}=\frac{200 \mathrm{~km}}{2 \mathrm{hr}}=100 \mathrm{~km} / \mathrm{hr}
$$

Instantaneous velocity:

- Velocity of an object at an INSTANT in time

Ex) An hour after you left Winipeg, you were driving 60km/hr because of a construction zone

Non-Uniform Motion...

So far we have only looked at uniform motion, and for uniform motion:
Average Velocity = Instantaneous Velocity

With NON-UNIFORM motion, an object will be ACCELERATING or DECELERATING, causing changes in its VELOCITY Therefore:

Average Velocity \neq Instantaneous Velocity

If speed or velocity is non-uniform, then a distance-time or position-time graph will be CURVED:

Non-Uniform Motion...

To find the AVERAGE velocity for the curve (or part of it), you would still find the SLOPE of a line between TWO POINTS;

$$
v_{a v}=\frac{\text { Rise }}{\text { Run }}=\frac{\Delta d}{\Delta t}
$$

If you want to find the INSTANTANEOUS velocity at an exact moment in time, you would draw a TANGENT line at that point and find its SLOPE:

$$
v_{\text {inst }}=\frac{\text { Rise }}{R u n}=\frac{\Delta d}{\Delta t}
$$

Acceleration...

- Acceleration is the RATE of CHANGE of VELOCITY or SPEED.
- It is calculated by the CHANGE in SPEED versus the CHANGE in TIME.

OR

$$
a_{a v}=\frac{v_{2}-v_{1}}{\Delta t}
$$

- UNITS for acceleration are $\mathbf{m} / \mathbf{s}^{\mathbf{2}}$ (or $\mathrm{km} / \mathrm{hr}^{2}$).
- Acceleration needs a DIRECTION if VELOCITY is used.

Ex) Gravity causes objects to accelerate toward the earth at a rate of $9.8 \mathrm{~m} / \mathrm{s}^{2}$
\rightarrow a skydivers velocity will increase by $9.8 \mathrm{~m} / \mathrm{s}$ every second.

Like velocity, acceleration can be UNIFORM or NON-UNIFORM. In this course we will concentrate on UNIFORM (constant) acceleration.

Acceleration Examples...

1. If you speed up on a motorcycle from rest $(0 \mathrm{~m} / \mathrm{s})$ to $9.0 \mathrm{~m} / \mathrm{s}$ in a time of $\frac{V_{2}}{2}$ seconds, what is your acceleration?

$$
\begin{aligned}
\vec{a}_{a} & =\frac{\overrightarrow{V_{2}}-\vec{V}_{1}}{\Delta t} \\
& =\frac{\left(9.0 \frac{\mathrm{~m}}{\mathrm{~s}}-0 \frac{\mathrm{~m}}{\mathrm{~s}}\right)}{2 \mathrm{~s}}=\frac{9 \frac{\mathrm{~m}}{\mathrm{~s}}}{2 \mathrm{~s}}=4.5 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

2. If a car accelerates from 0 to $100 \mathrm{~km} / \mathrm{hr}$ in 6 seconds. What is the average acceleration of the car?

$$
4 \div 3.6=27.8 \mathrm{~m} / \mathrm{s}
$$

$$
\vec{a}=\frac{\vec{V}_{2}-\vec{V}_{1}}{\Delta t}=\frac{27.8 \mathrm{~m} / \mathrm{s}-0 \mathrm{~m} / \mathrm{s}}{6 \mathrm{~s}}=\frac{27.8 \mathrm{~m} / \mathrm{s}}{65}=4.63 \mathrm{~m} / \mathrm{s}^{2}
$$

Try these ones. travelling at a velocity of $8.3 \mathrm{~m} / \mathrm{s}$ down the hill. What is his average acceleration? V_{2}

$$
\vec{a}=\frac{\vec{v}_{2}-\vec{v}_{1}}{\Delta t}=\frac{\left(8.3 \frac{\mathrm{~m}}{\mathrm{~s}}-1.8 \frac{\mathrm{~m}}{\mathrm{~s}}\right)}{4.2 \mathrm{~s}}=\frac{6.5 \frac{\mathrm{~m}}{\mathrm{~s}}}{42 \mathrm{~s}}=+1.5 \mathrm{~m} / \mathrm{s}^{2}
$$

2. If a race car is travelling at $100 \mathrm{~km} / \mathrm{h}$ comes to a stop in 5.0 s what is the average acceleration?

$$
\rightarrow \mathrm{m} / \mathrm{s} \quad 100 \mathrm{k} / \mathrm{h} \div 3.6=27.8 \mathrm{~m} / \mathrm{s}
$$

$$
\vec{a}_{a}=\frac{\vec{v}_{2}-\vec{v}_{1}}{\Delta t}=\frac{0 \mathrm{~m} / \mathrm{s}-27.8 \mathrm{~m} / \mathrm{s}}{5.0 \mathrm{~s}}=\frac{-27.8 \mathrm{~m} / \mathrm{s}}{5.0 \mathrm{~s}}=-5.56 \mathrm{~m} / \mathrm{s}^{2}
$$

Try this one...
A bus with an initial speed of $12 \mathrm{~m} / \mathrm{s}$ accelerates at $0.62 \mathrm{~m} / \mathrm{s}^{2}$ for 15 s , what is the final speed of the bus?

$$
\begin{gathered}
\vec{a}=\frac{\overrightarrow{V_{2}}-\overrightarrow{V_{1}}}{\Delta t} \\
\times 15^{15 /} 062 \mathrm{~m} / \mathrm{s}^{2}=\frac{\vec{V}_{2}-12 \mathrm{~m} / \mathrm{s}}{(15 \mathrm{~s})} \times 15 \mathrm{~s} \\
(15 \mathrm{~s})\left(0.62 \mathrm{~m} / \mathrm{s}^{2}\right)=V_{2}-12 \mathrm{~m} / \mathrm{s} \\
(15 \mathrm{~s})\left(0.62 \mathrm{~m} / \mathrm{s}^{2}\right)+12^{\mathrm{m} / \mathrm{s}}=\sqrt{2} \\
V_{2}=21.3 \mathrm{~m} / \mathrm{s}
\end{gathered}
$$

