# Graphing Uniform Motion



#### **Outcomes:**

S2-3-01 Analyze the relationship between displacement, time, and velocity for an object in uniform motion.

### **Uniform Motion...**

All of the motion we have studied so far has been UNIFORM (CONSTANT),

 $\rightarrow$  without any <u>ACCELERATION</u> or <u>DECELERATION</u>.

We can draw graphs to represent **DISTANCE**, **DISPLACEMENT**, **VELOCITY** and **ACCELERATION**.

#### Notes on Graphs:

- use a line of best fit or a smooth curve to connect points
- include title, axis labels, scales, etc
- Use a ruler!



 A typical distance time graph showing <u>UNIFORM</u> (constant) motion would look like this:



• The <u>SLOPE</u> of the line tells us how <u>FAST</u> the object is moving:



- A <u>STEEPER</u> slope means you cover <u>MORE</u> <u>DISTANCE</u> in <u>LESS</u> <u>TIME</u> → <u>FASTER</u> speed!
- A <u>STRAIGHT</u> line on a distance time curve shows that <u>SPEED</u> is uniform (<u>CONSTANT</u>).
- A <u>CURVED</u> line will indicate that the <u>SPEED</u> is <u>CHANGING</u>, and is <u>NON</u>-<u>UNIFORM</u> (more on this later).

#### Example:

Sketch a distance-time graph for a walker and a runner who leave the school at the same time and travel in the same direction at different speeds.

#### Finding Slope (Speed):

 To find the <u>SLOPE</u> of a line, choose two <u>POINTS</u>, and <u>DIVIDE</u> the change in <u>RISE</u> (distance) by the change in <u>RUN</u> (time) between the points:



\*\*\*The **<u>SLOPE</u>** of a d-t graph = <u>**VELOCITY**</u>!!!

#### Try this one...

Find the speed given the following distance-time graph:



### **Position-Time Graphs...**

#### **Position-Time Graphs (Using Displacement):**

A position-time graph is <u>SIMILAR</u> to a distance-time graph as long as the motion is in <u>ONE DIRECTION</u> only:

Ex) Geese flying south for the winter:



If the object moves in the <u>FORWARD</u> and the <u>REVERSE</u> <u>DIRECTION</u>, the graphs will appear <u>DIFFERENT</u>.

## **Position-Time Graphs...**

#### **Remember:**

- Distance is the <u>TOTAL</u> <u>DISTANCE</u> covered → must always <u>INCREASE</u>!
- Displacement is the <u>POSITION</u> relative to the <u>ORIGIN</u>!
- This means that <u>POSITION-TIME</u> graphs can have a <u>NEGATIVE</u> <u>SLOPE</u>, because the position can <u>DECREASE</u>!

#### Example:

Going to silver city, watching a movie, and then going home after.



→ Distance to and from theatre adds together



Trip home returns person to origin (displacement = 0)

### **Position-Time Graphs...**

**Explaining a position-time graph:** 

- <u>POSITIVE</u> slope is <u>FORWARD</u> motion,
  <u>NEGATIVE</u> slope is <u>BACKWARD</u> motion.
- HORIZONTAL line means the object is NOT MOVING



• <u>STRAIGHT</u> lines mean <u>CONSTANT</u> <u>VELOCITY</u>, <u>CURVES</u> mean velocity is <u>CHANGING</u>.

#### **Recall**

- SLOPE of DISTANCE-TIME graph = SPEED
- Now, <u>SLOPE</u> of a <u>POSITION</u>-<u>TIME</u> graph = <u>VELOCITY</u>!

### **Velocity-Time Graphs...**

### **Velocity-Time Graphs:**

 Since we are talking about uniform (constant) velocities, our velocitytime graphs would be a <u>STRAIGHT</u>, <u>HORIZONTAL</u> line:



### **Acceleration-Time Graphs...**

#### **Acceleration-Time Graphs:**

 Again, we are currently looking at constant motion only. Therefore we <u>CANNOT</u> have any <u>ACCELERATION</u> or <u>DECELERATION</u>. So a graph would just be a <u>HORIZONTAL</u> line at <u>ZERO</u>.

