Graphing Uniform Motion

Outcomes:

S2-3-01 Analyze the relationship between displacement, time, and velocity for an object in uniform motion.

Uniform Motion...

All of the motion we have studied so far has been UNIFORM (CONSTANT), \rightarrow without any ACCELERATION or DECELERATION.

We can draw graphs to represent DISTANCE, DISPLACEMENT, VELOCITY and ACCELERATION.

Notes on Graphs:

- use a line of best fit or a smooth curve to connect points
- include title, axis labels, scales, etc
- Use a ruler!

Distance-Time Graphs...

- A typical distance time graph showing UNIFORM (constant) motion would look like this:

- The SLOPE of the line tells us how FAST the object is moving:

Distance-Time Graphs...

- A STEEPER slope means you cover MORE DISTANCE in LESS TIME \rightarrow FASTER speed!
- A STRAIGHT line on a distance time curve shows that SPEED is uniform (CONSTANT).
- A CURVED line will indicate that the SPEED is CHANGING, and is NONUNIFORM (more on this later).

Example:

Sketch a distance-time graph for a walker and a runner who leave the school at the same time and travel in the same direction at different speeds.

Distance-Time Graphs...

Finding Slope (Speed):

- To find the SLOPE of a line, choose two POINTS, and DIVIDE the change in RISE (distance) by the change in RUN (time) between the points:

$$
\text { Slope }=\text { speed }=\frac{\text { Rise }}{\text { Run }}=\frac{\Delta d}{\Delta t}
$$

***The $\underline{\text { SLOPE }}$ of a d-t graph = VELOCITY!!!

Distance-Time Graphs...

Try this one...

Find the speed given the following distance-time graph:

Position-Time Graphs...

Position-Time Graphs (Using Displacement):

A position-time graph is SIMILAR to a distance-time graph as long as the motion is in ONE DIRECTION only:

Ex) Geese flying south for the winter:

- If the object moves in the FORWARD and the REVERSE DIRECTION, the graphs will appear DIFFERENT.

Position-Time Graphs...

Remember:

- Distance is the TOTAL DISTANCE covered \rightarrow must always INCREASE!
- Displacement is the POSITION relative to the ORIGIN!
- This means that POSITION-TIME graphs can have a NEGATIVE SLOPE, because the position can DECREASE!

Example:

Going to silver city, watching a movie, and then going home after.

\rightarrow Distance to and from theatre adds together

Position vs. Time

\rightarrow Trip home returns person to origin (displacement $=0$)

Position-Time Graphs...

Explaining a position-time graph:

- POSITIVE slope is FORWARD motion, NEGATIVE slope is BACKWARD motion.
- HORIZONTAL line means the object is NOT MOVING

- STRAIGHT lines mean CONSTANT VELOCITY, CURVES mean velocity is CHANGING.

Recall

- SLOPE of DISTANCE-TIME graph = SPEED
- Now, SLOPE of a POSITION-TIME graph = VELOCITY!

Velocity-Time Graphs...

Velocity-Time Graphs:

- Since we are talking about uniform (constant) velocities, our velocitytime graphs would be a STRAIGHT, HORIZONTAL line:

Acceleration-Time Graphs...

Acceleration-Time Graphs:

- Again, we are currently looking at constant motion only. Therefore we CANNOT have any ACCELERATION or DECELERATION. So a graph would just be a HORIZONTAL line at ZERO.

Acceleration vs. Time

Time (s)

