Reactions of Acids \& Bases

http://oceanoptics.com/measurementtechnique/ph-sensing/ph-scale/
tcomes:
1-04 Write balanced neutralization reactions involving strong acids and bases.
1-05 Perform a lab to demonstrate the stoichiometry of a neutralization reaction.

Acid \& Base Review...

Recall From Science 20F

Properties of acids: $\left(\mathrm{H}^{+}\right)$

- TASTE SOUR
- TURN BLUE LITMUS RED (BRA)
- NEUTRALIZE BASES
- REACT WITH CARBONATES TO PRODUCE CO2
- ARE CORROSIVE TO METALS
- ARE ELECTROLYTES
- BURN WHEN TOUCHING THE SKIN

Properties of Bases: (OHH^{-})

- TASTE BITTER
- FEEL SLIPPERY
- TURN RED LITMUS BLUE
- NEUTRALIZE ACIDS
- ARE ALSO ELECTROLYTES
- ARE CAUSTIC (DISSOLVE ORGANIC MATERIAL)

Common Acids \& Bases

You should be able to recognize the following common acids and bases...

Common Acids:

```
HNO
```

HNO
HNO
HNO
H2}\mp@subsup{\textrm{SO}}{4}{}\mathrm{ - SULFURIC ACID
H2}\mp@subsup{\textrm{SO}}{4}{}\mathrm{ - SULFURIC ACID
H2SO
H2SO
CH3COOH-ACETIC ACID (HC+C2H3O
CH3COOH-ACETIC ACID (HC+C2H3O
HCl - HYDROCHLORIC ACID
HCIO - HYPOCHLOROUS ACID
$\mathrm{H}_{2} \mathrm{CO}_{3}$ - CARBONIC ACID
$\mathrm{H}_{3} \mathrm{PO}_{4}$ - PHOSPHORIC ACID

```

Common Bases:
\(\mathrm{Mg}(\mathrm{OH})_{2}\) - MAGNESIUM HYDROXIDE
\(\mathrm{NH}_{3}\) - AMMONIA
\(\mathrm{Ca}(\mathrm{OH})_{2}\) - CALCIUM HYDROXIDE
\(\mathrm{Na}(\mathrm{OH})\) - SODIUM HYDROXIDE
KOH - POTASSIUM HYDROXIDE
Al \((\mathrm{OH})_{3}\) - ALUMINUM HYDROXIDE
Common Bases:
\(\mathrm{NH}_{3}\) - AMMONIA

Alcohols - OH
Keep in mind that you have an acid chart in your data booklet that you can use to identify any acids you may not know...

\section*{Arrhenius Definition of Acids \& Bases}

\section*{Acids:}

An acid is a substance that releases \(\mathrm{H}^{+}\)ions in water.
Ex) \(\mathrm{HCl}_{(\mathrm{aq})} \rightarrow \mathrm{H}_{(\mathrm{aq})}^{+}+\mathrm{Cl}_{(\mathrm{aq})}\)

\section*{Bases:}

A base is a substance that releases \(\mathrm{OH}^{-}\)ions in water.
\[
\mathrm{Ex}) \mathrm{NaOH}_{(\mathrm{aq})} \rightarrow \mathrm{Na}_{(\mathrm{aq)}}^{+}+\mathrm{OH}_{(\mathrm{aq})}^{-}
\]

\[
\mathrm{NH}_{3(\mathrm{aq)}}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightarrow \mathrm{NH}_{4}^{+}{ }_{(\mathrm{aq})}+\mathrm{OH}_{-(\mathrm{aq})}^{-}
\]

Given our definition of acids and bases, what do you think would result from the mixing of an acid and base solution ?


\section*{Neutralization Reactions}

Are DOUBLE DISPLACEMENT reactions between an ACID and a BASE to produce a SALT and WATER.
-Acids and bases are OPPOSITES.
-Acids contain \(\underline{\mathbf{H}^{+}}\)ions,
-Bases contain \(\mathbf{O H}^{-}\)ions,
- When they are in EQUAL PROPORTION, they combine to form \(\underline{H}_{2} \underline{O}\) (NEUTRAL).
- Therefore, if: \(\underline{\mathrm{mol}}_{\underline{H}}=\mathrm{mol}_{\underline{O H}}\), we get \(\mathrm{pH}=\mathbf{7}\) (NEUTRAL).
- The resulting solution still CONDUCTS ELECTRICITY.
Ex) \(\underset{\text { Base Acid }}{\mathrm{NaOH}_{(a q)}}+\underset{\text { Salt }}{\mathrm{HCl}_{(a q)}} \rightarrow \underset{\text { Water }}{\mathrm{NaCl}_{(a q)}}+\underset{\text { Wh }}{\mathrm{H}_{2} \mathrm{O}_{(1)}}\)


\section*{Neutralization Reactions}

We can write the molecular, ionic and net-ionic equations for this reaction:

Molecular:
\[
\mathrm{NaOH}_{(a q)}+\mathrm{HCl}_{(a q)} \rightarrow \mathrm{NaCl}_{(a q)}+\mathrm{H}_{2} \mathrm{O}_{(l)}(\ell)
\]

Total Ionic:
\[
\left[\mathrm{Na}_{(a q)}^{+}+\mathrm{OH}_{(a q)}^{-}\right]+\left[\mathrm{H}_{(a q)}^{+}+\mathrm{CF}_{(a q)}\right] \rightarrow\left[\mathrm{Na}_{(a q)}^{+}+\mathrm{Cr}_{(a q)}^{-}+\mathrm{H}_{2} \mathrm{O}_{(1)}\right.
\]

Net-Ionic:
\[
\mathrm{H}_{(a q)}^{+}+\mathrm{OH}_{(a q)}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}_{(l)}
\]

Neutralization Reactions
Try this one...
Write the balanced molecular, ionic and net-ionic equations for the neutralization of KOH with \(\mathrm{H}_{2} \mathrm{SO}_{4}\).

Molecular:
\[
2 \mathrm{KOH}\left(\text { coot }+\mathrm{H}_{2} \mathrm{SO}_{4 \text { aq }} \rightarrow \mathrm{K}_{2} \mathrm{SO}_{4 \text { coo }}+2 \mathrm{H}_{2} \mathrm{O}_{u)}\right.
\]

Total Ionic:
\[
\left[2 K_{\text {(aq) }}^{+}+2 O H_{(a q)}^{-}\right]+\left[2 H_{(a n)}^{H}+\operatorname{son}_{(\text {(eq) }}^{2}\right] \rightarrow\left[2 K_{(a)}^{+}+\operatorname{son}_{\text {aq }}^{2}\right]+2 H_{2} O(s)
\]

Net-Ionic:
\[
\begin{aligned}
& 2 \mathrm{H}_{(a q)}^{+}+2 \mathrm{OH}_{(a q)}^{-} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(x) \\
& \mathrm{H}_{(\mathrm{aq}}^{+}+\mathrm{OH}_{(\mathrm{aq})}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}(e)
\end{aligned}
\]

\section*{Neutralization Reactions}

\section*{Notice:}

The net-ionic equation for ANY neutralization reaction is:
\[
\mathrm{H}^{+}{ }_{(a q)}+\mathrm{OH}^{-}(a q) \rightarrow \mathrm{H}_{2} \mathrm{O}_{(1)}
\]

In order for \(\underline{\text { NEUTRALIZATION }}\) to occur, the MOLES of \(\underline{\mathbf{H}^{+}}\)and moles of \(\underline{\mathbf{O H}^{-}}\)must be EQUAL. As we have seen, not all neutralization reactions are between MONOPROTIC ACIDS (one proton or \(\mathrm{H}+\) ion) and MONOHYDROTIC BASES (one hydroxide).
( NaOH )
\(\rightarrow\) In these cases, we must ensure that the equation is BALANCED.```

