Reactions of Acids & Bases

The pH Scale

http://oceanoptics.com/measurementtechnique/ph-sensing/ph-scale/

Dutcomes:

1-04 Write balanced neutralization reactions involving strong acids and bases.1-05 Perform a lab to demonstrate the stoichiometry of a neutralization reaction.

Acid & Base Review...

Recall From Science 20F

Properties of acids: (H+)

- TASTE SOUR
- TURN BLUE LITMUS RED (BRA)
- <u>NEUTRALIZE BASES</u>
- <u>REACT WITH CARBONATES TO PRODUCE</u>
 <u>CO2</u>
- <u>ARE CORROSIVE TO METALS</u>
- <u>ARE ELECTROLYTES</u>
- BURN WHEN TOUCHING THE SKIN

Properties of Bases: (014-)

- TASTE BITTER
- FEEL SLIPPERY
- TURN RED LITMUS BLUE
- <u>NEUTRALIZE ACIDS</u>
- ARE ALSO ELECTROLYTES
- ARE CAUSTIC (DISSOLVE ORGANIC MATERIAL)

Common Acids & Bases

You should be able to recognize the following common acids and bases...

Common Acids:

 $HNO_{3} - \underline{NITRIC ACID}$ $HNO_{2} - \underline{NITROUS ACID}$ $H_{2}SO_{4} - \underline{SULFURIC ACID}$ $H_{2}SO_{3} - \underline{SULFUROUS ACID}$ $CH_{3}COOH - \underline{ACETIC ACID} (HC_{2}H_{3}O_{2})$

$$\label{eq:HCl} \begin{split} &\mathsf{HCl}-\underline{\mathsf{HYDROCHLORIC}\ ACID}\\ &\mathsf{HClO}-\underline{\mathsf{HYPOCHLOROUS}\ ACID}\\ &\mathsf{H_2CO_3}-\underline{\mathsf{CARBONIC}\ ACID}\\ &\mathsf{H_3PO_4}-\underline{\mathsf{PHOSPHORIC}\ ACID} \end{split}$$

Common Bases:

 $Mg(OH)_{2} - \underline{MAGNESIUM HYDROXIDE}$ $NH_{3} - \underline{AMMONIA}$ $Ca(OH)_{2} - \underline{CALCIUM HYDROXIDE}$ $Na(OH) - \underline{SODIUM HYDROXIDE}$ $KOH - \underline{POTASSIUM HYDROXIDE}$ $AI(OH)_{3} - \underline{ALUMINUM HYDROXIDE}$

Keep in mind that you have an acid chart in your data booklet that you can use to identify any acids you may not know...

Arrhenius Definition of Acids & Bases

Acids:

An acid is a substance that releases H^+ ions in water.

Ex) $HCl_{(aq)} \rightarrow H^{+}_{(aq)} + Cl^{-}_{(aq)}$

<u>Bases :</u>

A base is a substance that releases OH^{-} ions in water. Ex) $NaOH_{(aq)} \rightarrow Na^{+}_{(aq)} + OH^{-}_{(aq)}$

 $NH_{3(aq)} + H_2O_{(I)} \rightarrow NH_4^+_{(aq)} + OH_{(aq)}^-$

Given our definition of acids and bases, what do you think would result from the mixing of an acid and base solution ?

Are **DOUBLE DISPLACEMENT** reactions between an **ACID** and a **BASE** to produce a **SALT** and **WATER**.

- •Acids and bases are **OPPOSITES**.
 - Acids contain <u>H</u>⁺ ions,
 - Bases contain <u>OH⁻</u> ions,
 - When they are in <u>EQUAL PROPORTION</u>, they combine to form <u>H₂O</u> (<u>NEUTRAL</u>).
- Therefore, if: $\underline{mol}_{H} = \underline{mol}_{OH}$, we get $\underline{pH=7}$ (<u>NEUTRAL</u>).
- The resulting solution still **<u>CONDUCTS</u> <u>ELECTRICITY</u>**.

Ex)
$$NaOH_{(aq)} + HCI_{(aq)} \rightarrow NaCI_{(aq)} + H_2O_{(l)}$$

Base Acid Salt Water

https://ifunny.co/tags/neutralization

We can write the molecular, ionic and net-ionic equations for this reaction:

Molecular:

$$NaOH_{(aq)} + HCI_{(aq)} \rightarrow NaCI_{(aq)} + H_2O_{(l)} (l)$$

Total Ionic:

$$Na^{+}_{(aq)} + OH^{-}_{(aq)} + H^{+}_{(aq)} + CI^{-}_{(aq)} \rightarrow Na^{+}_{(aq)} + CI^{-}_{(aq)} + H_{2}O_{(I)}$$

Net-Ionic:

$$H^+_{(aq)} + OH^-_{(aq)} \rightarrow H_2O_{(I)}$$

Try this one...

Write the balanced molecular, ionic and net-ionic equations for the neutralization of KOH with H_2SO_4 .

Molecular:

401

$\frac{\text{Total lonic:}}{\left(2 + \frac{1}{2} + 20 + \frac{1}{2}\right)} + \left(2 + \frac{1}{2} + \frac{1}{$

Net-Ionic:

2Htay + 20Htay -> 2H2OCR) Htay + OHtay -> H2OCR)

Notice:

The net-ionic equation for <u>ANY</u> neutralization reaction is:

 $H^{+}_{(aq)} + OH^{-}_{(aq)} \rightarrow H_2O_{(l)}$

In order for **<u>NEUTRALIZATION</u>** to occur, the **<u>MOLES</u>** of H^+ and moles of <u>OH</u>⁻ must be <u>EQUAL</u>.

As we have seen, not all neutralization reactions are between <u>MONOPROTIC</u> <u>ACIDS</u> (one proton or H+ ion) and <u>MONOHYDROTIC</u> <u>BASES</u> (one hydroxide). (HCI, HBC)

 \rightarrow In these cases, we must ensure that the equation is <u>BALANCED</u>.