Average \& Instantaneous Rates With Graphs

What I Want to do All Day

Outcomes:

- Perform a lab to measure the average and instantaneous rates of a chemical reaction.

Rates With Graphs:

We can use a graph of concentration vs. time to find average and instantaneous rates of a reaction.

Average Rates:

- Found by calculating the SLOPE of a concentration vs. time graph over a certain INTERVAL.

Instantaneous Rates:

- Are rates at a SPECIFIC TIME in a reaction.
- Are found by calculating the SLOPE of the line TANGENT to a point on the curve.
- A TANGENT line is a STRAIGHT LINE through a certain POINT on a curve.
- We use this method because the rate of a reaction will change over time and not produce a LINEAR graph.

Example:

The following data was collected for the reaction $\mathrm{SO}_{2} \mathrm{Cl}_{\mathbf{2}} \rightarrow \mathrm{SO}_{2}+\mathrm{Cl}_{\mathbf{2}}$

$\left[\mathrm{SO}_{2} \mathrm{Cl}_{2}\right](\mathrm{mol} / \mathrm{L})$	Time (s)
0.100	0
0.082	100
0.067	200
0.055	300
0.045	400
0.037	500
0.030	600
0.025	700
0.02	800

a) Determine the average rate for the first 200 seconds.

$$
R_{\text {ATE }}=\frac{\Delta\left[\mathrm{SO}_{2} \mathrm{Cl}_{2}\right]}{\Delta t}=\frac{0.067 \frac{\mathrm{~mol}}{\mathrm{~s}}-0 . \frac{\mathrm{mol}_{\mathrm{L}}}{200 \mathrm{~S}}=1.65 \times 10^{-4} \frac{\mathrm{~mol}}{\mathrm{~L} \cdot \mathrm{~s}} \text { }}{200}
$$

b) Determine the average rate of reaction for the 500 to 700 second time interval.

$$
\text { Rate }=\frac{\Delta\left[\mathrm{SO}_{2} \mathrm{Cl}_{2}\right]}{\Delta t}=\frac{0.025 \frac{\mathrm{~mol}}{\mathrm{~L}}-0.037 \frac{\mathrm{~mol}}{\mathrm{c}}}{200 \mathrm{~S}}=6 \times 10^{-5} \frac{\mathrm{~mol}}{\mathrm{~L} . \mathrm{s}}
$$

c) Account for the difference between the rates in (a) and (b)

$$
a>b \rightarrow \text { more reactanst }
$$

Example:
9.62×10^{-6}
0.0000938
$8,33 \times 10^{5}$
0.0060962
0.0001

Rate $=\frac{\Delta C}{\Delta t}=\frac{0.03-0.045}{560-400}$
d) Use the graph to find the instantaneous rate of decomposition of $\mathrm{SO}_{2} \mathrm{Cl}_{2}$ at 400 s

