# KMT of Solids & Liquids



**Outcome:** 

Explain the properties of liquids and solids using the KMT.

# **Properties of Liquids:**

#### Liquids:

- **1.** Particles are closer together than in gases.
- 2. Particles are in constant, random motion, but only move short distances before colliding (closer together)
- 3. Liquids do not occupy the entire container, but will take on its shape.
- 4. Diffusion is slower than in gases (particles move slower)
- 5. Densities are higher than gases
- 6. Slightly compressible

**INTERMOLECULAR FORCES** of attraction are **STRONGER** in liquids— they hold the particles closer together.

Different liquids have different **VISCOSITIES** – the resistance to friction:

- Strong IMF's → <u>greater viscosity</u> (ex. oil, molasses, water!)
- Weak IMF's → <u>lower viscosity</u> (ex. alcohol)
- Viscosity <u>INCREASES</u> as temperature <u>DECREASES</u>.

## **Properties of Solids:**

#### Solids:

- **1.** Particles are closer together, highly ordered, and are in "fixed" positions (maintain own shape).
- **2.** Usually more dense than liquids (exception: water!)
- 3. Are not very compressible
- 4. Diffusion occurs only at the surface of a solid

Solids can be *crystalline* or *amorphous* 

# **Crystalline Solids:**

Are solids that have a **<u>HIGHLY</u> ORDERED** arrangement of particles. There are 4 main types:

#### 1. Covalent Network:

- Atoms are bonded <u>COVALENTLY</u> without forming <u>MOLECULES</u>.
- Are very <u>STRONG</u>. Ex. Diamond, graphite, silicon



#### 2. Ionic Solids:

- **IONS** arrange themselves in an **ALTERNATING** pattern.
- Very STABLE structure. Ex. NaCl, CaF<sub>2</sub>





# **Crystalline Solids:**

#### 3. Molecular Solids:

- Particles held together by **INTERMOLECULAR** FORCES.
- Usually are very <u>SOFT</u>. Ex. I<sub>2</sub>, S<sub>8</sub>

(a) In ice, water molecules form a crystal lattice.

(b) In liquid water, no crystal lattice forms.



Copyright © 2008 Pearson Benjamin Cummings. All rights reserved.



(c) Liquid water is denser than ice. As a result, ice floats.



## **Crystalline Solids:**

#### 4. Metallic Solids:

- Atoms held together by mobile VALENCE ELECTRONS.
- Strength <u>VARIES</u>, Ex. *Cu, Ag, Pb*



## **Non-Crystalline Solids:**

#### **Amorphous Solids:**

- Amorphous means "without shape"
- Are solids that lack a <u>REGULAR 3-DIMENSIONAL ARRANGEMENT</u> of atoms.
- Are like super cooled LIQUIDS.
  - Ex. Glass, rubber, plastic.



### **States of Matter:**

The state that a substance at room temperature depends on the strength of the intermolecular forces:

- Strong IMF's → *Solids at room temperature*
- Weaker IMF's → Liquids at room temperature
- Weakest IMF's → Gases at room temperature

As we add **ENERGY** (**HEAT**) to a solid, the particles gain energy, and will eventually get enough energy to overcome the IMF's, and undergo a phase change.



The reverse is true with cooling (removing energy)

### **Maxwell-Boltzman Distribution:**

In order to change state, molecules must overcome the **IMF'S** 



Any molecules to the <u>LEFT</u> of the IMF line <u>DO NOT</u> have enough <u>ENERGY</u> to change state.



| Gas                 | Liquid                  | Solid                   |
|---------------------|-------------------------|-------------------------|
| Highly compressible | Slightly Compressible   | Very slightly           |
|                     |                         | compressible            |
| Low Density         | Higher density          | Usually highest density |
| Fills container     | Does not expand to fill | Maintains its volume    |
| completely          | container (definite     |                         |
|                     | volume)                 |                         |
| Assumes shape of    | Assumes shape of        | Retains its shape       |
| container           | container               |                         |
| Rapid diffusion     | Slow diffusion          | Very slow diffusion at  |
|                     |                         | surfaces                |
| High expansion upon | Low expansion on        | Low expansion on        |
| heating             | heating                 | heating                 |
| Weak/no IMF's       | Medium IMF's            | Strong IMF's            |
|                     |                         |                         |