

Outcomes:

Write electron configurations for elements of the periodic table. *Include: selected elements up to atomic number 36 (Krypton)*

Relate the electron configuration of an element to its valence electron(s) and its position on the periodic table.

In grade 9 you learned how to draw Bohr diagrams that showed the arrangement of electrons in orbits around a central nucleus.

We have just seen that:

- The orbits are really <u>ENERGY</u> <u>LEVELS</u> (<u>QUANTUM</u> numbers) that <u>ELECTRONS</u> occupy.
- Within each energy level there are <u>ORBITALS</u> which show the <u>PROBABLE</u> <u>LOCATION</u> of an electron with a certain <u>QUANTUM</u> of <u>ENERGY</u>.

Now we can show a more correct electron arrangement for a much wider range of elements...

First we must see how these orbitals are arranged:

- Each **PRINCIPLE ENERGY LEVEL (n)**, has **n² ORBITALS** or sublevels.
 - le. Energy level: 1 has 1² = 1 orbital

2 has 2² = **4** orbitals

- 3 has 3² = **9** orbitals
- Each orbital is given the letter designation of <u>s, p, d OR f.</u> and each of these orbitals has a different <u>SHAPE</u>.
- There are also a different **NUMBER** of each type of orbital possible in each **ENERGY LEVEL (n)**
 - s = 1 orbital
 - p = 3 orbitals
 - d = 5 orbitals
- Notice the pattern!
- f = 7 orbitals

The table below summarizes the types and number of orbitals available in each energy level.

Principle Energy Level or Principle Quantum Number (n)	Number of orbitals (n²)	Orbital Types
1	1	1 s-orbital
2	4	1 s-orbital + 3 p-orbitals
3	9	1 s-orbital + 3 p-orbitals + 5 d-orbitals
4	16	1 s-orbital + 3 p-orbitals + 5 d-orbitals + 7 f-orbitals
5	25	15-orbital + 3p's + 5d's + 7f's + 9g's

***Notice that in any energy level there can only be:

- \rightarrow 1 s-orbital
- ightarrow 3 p-orbitals (in energy levels 2 and up)
- ightarrow 5 d-orbitals (in energylevels 3 and up)
- ightarrow 7 f-orbitals (in energy levels 4 and up)

The energy levels and orbitals are arranged as follows:

Adapted from: http://www.docbrown.info/page07/ASA2ptable2.htm

- Each box represents an electron orbital, and can hold 2 electrons.
- You will probably notice that the <u>3d</u> orbital has <u>MORE</u> ENERGY than the <u>4s</u> orbital.
 - \rightarrow This is because one energy level can <u>OVERLAP</u> the next energy level.

http://www.tutorvista.com/content/chemistry/chemistry-iv/atomic-structure/atoms-configurations.php

Rules for Filling the Orbitals

1. The Aufbau Principle

- Every electron will occupy the <u>LOWEST</u> energy orbital <u>POSSIBLE</u>.
- The term aufbau is from the German term aufbauen which means to **BUILD UP**.

2. The Pauli Exclusion Principle

- Said that two <u>IDENTICAL</u> electrons <u>CANNOT</u> occupy the same <u>QUANTUM</u> <u>STATE</u> (orbit)
 →electrons <u>REPEL</u> each other
- He proposed that electrons are constantly <u>SPINNING</u>, and when they spin they create a <u>MAGNETIC</u>
 <u>FIELD</u> (like the earth)

http://centrobioenergetica.squarespace.com/magnetismo/

Rules for Filling the Orbitals

2. The Pauli Exclusion Principle (Con't)

- If two electrons have **OPPOSITE SPINS**, they **CAN** occupy the same **ORBITAL**.
- Therefore, a maximum of <u>TWO</u> electrons can occupy a single <u>ORBITAL</u>.
- We denote electron spins with an <u>ARROW UP</u> (positive spin) or an <u>ARROW</u> DOWN (negative spin)

Example:

Rules for Filling the Orbitals

3. Hund's Rule

- When electrons fill orbitals, they obey the aufbau principle and fill such that the <u>NUMBER OF</u>
 <u>UNPAIRED ELECTRONS IS MAXIMIZED</u>.
- That is, before filling the first p-orbital with two electrons, an electron is placed into the p_x-orbital, then an electron into the p_y-orbital then the p_z-orbital before filling the px-orbital.

Example: The 2p orbitals would be filled as follows:

Fill in the electron configuration charts for the following elements:

Hydrogen

٥

1-1

Lithium

Examples

Nitrogen

7e-

Phosphorus

Ke

Try these ones...

Magnesium

Try these ones...

Zinc

30e-

2+ Zn

30

î↓ 3d

3d

3d

Calcium

