Electron Arrangements

Outcomes:

Write electron configurations for elements of the periodic table. Include: selected elements up to atomic number 36 (Krypton)

Relate the electron configuration of an element to its valence electron(s) and its position on the periodic table.

Electron Arrangements

In grade 9 you learned how to draw Bohr diagrams that showed the arrangement of electrons in orbits around a central nucleus.

We have just seen that:

- The orbits are really ENERGY LEVELS (QUANTUM numbers) that ELECTRONS occupy.
- Within each energy level there are ORBITALS which show the PROBABLE LOCATION of an electron with a certain QUANTUM of ENERGY.

Now we can show a more correct electron arrangement for a much wider range of elements...

Electron Arrangements

First we must see how these orbitals are arranged:

- Each PRINCIPLE ENERGY LEVEL (\mathbf{n}), has \mathbf{n}^{2} ORBITALS or sublevels.
- le. Energy level: 1 has $1^{2}=1$ orbital

2 has $2^{2}=4$ orbitals
3 has $3^{2}=9$ orbitals

- Each orbital is given the letter designation of $\mathbf{s , p , d} \mathbf{~ O R} \mathbf{f}$. and each of these orbitals has a different SHAPE.
- There are also a different NUMBER of each type of orbital possible in each ENERGY LEVEL (n)
- $s=1$ orbital
- $p=3$ orbitals
- $d=5$ orbitals \quad Notice the pattern!
- $f=7$ orbitals

Electron Arrangements

The table below summarizes the types and number of orbitals available in each energy level.

Principle Energy Level or Principle Quantum Number (n)	Number of orbitals (n^{2})	Orbital Types
1	1	1 s-orbital
2	4	1 s-orbital + 3 p-orbitals
3	9	1 s-orbital + 3 p-orbitals + 5 d-orbitals
4	16	1 s -orbital +3 p -orbitals +5 d -orbitals +7 f -orbitals
5	25	is-orbital $+3 p^{1 s}+5 d^{1 s}+7 f^{1 s}+9 g$

***Notice that in any energy level there can only be:
$\rightarrow 1$ s-orbital
$\rightarrow 3$ p-orbitals (in energy levels 2 and up)
$\rightarrow 5$ d-orbitals (in energylevels 3 and up)
$\rightarrow 7$ f-orbitals (in energy levels 4 and up)

Electron Arrangements

The energy levels and orbitals are arranged as follows:

- Each box represents an electron orbital, and can hold 2 electrons.
- You will probably notice that the 3d orbital has MORE ENERGY than the 4s orbital.
\rightarrow This is because one energy level can OVERLAP the next energy level.

Electron Arrangements

Rules for Filling the Orbitals

1. The Aufbau Principle

- Every electron will occupy the LOWEST energy orbital POSSIBLE.
- The term aufbau is from the German term aufbauen which means to BUILD UP.

2. The Pauli Exclusion Principle

- Said that two IDENTICAL electrons CANNOT occupy the same QUANTUM STATE (orbit) \rightarrow electrons REPEL each other
- He proposed that electrons are constantly SPINNING, and when they spin they create a MAGNETIC FIELD (like the earth)

http://centrobioenergetica.squarespace.com/magnetismo/

Rules for Filling the Orbitals

2. The Pauli Exclusion Principle (Con't)

- If two electrons have OPPOSITE SPINS, they CAN occupy the same ORBITAL.
- Therefore, a maximum of TWO electrons can occupy a single ORBITAL.
- We denote electron spins with an ARROW UP (positive spin) or an ARROW DOWN (negative spin)

Example:

OK

NOT OK

Rules for Filling the Orbitals

3. Hund's Rule

- When electrons fill orbitals, they obey the aufbau principle and fill such that the NUMBER OF UNPAIRED ELECTRONS IS MAXIMIZED.
- That is, before filling the first p-orbital with two electrons, an electron is placed into the p_{x}-orbital, then an electron into the p_{y}-orbital then the p_{z}-orbital before filling the px -orbital.

Example: The 2 p orbitals would be filled as follows:

Examples

Fill in the electron configuration charts for the following elements:

Hydrogen

$1 e^{-}$

Examples

Lithium

$3 e^{-}$

Examples

Nitrogen

$7 e^{-}$

Examples

Phosphorus

re

Try these ones...

Magnesium

$12 e^{\prime}$

Try these ones...

$$
z_{n}^{2+}
$$

Zinc
$30 e^{\prime}$

Try these ones...

Calcium

