Determining Conjugate Pairs...

Acid-base
 - conjugate pair
 $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$

Outcomes:

- Write acid/base chemical equations. Include conjugate pairs, amphoteric behaviour.

Determining Conjugate Pairs

One of the things you'll be required to do is, given an ION or MOLECULE, write the formula for its CONJUGATE ACID or BASE.

To find the CONJUGATE ACID of something:

For example, let's say we want to find the conjugate acid of HSO_{4}^{-}

Remember, adding ONE (+) CHARGE to something that has a (-) CHARGE, brings the charge to " $\underline{0}$ ".

Determining Conjugate Pairs

To find the CONJUGATE BASE of something:

For example, let's say we want to find the conjugate $\frac{\text { Base }}{\text { Beid }}{ }^{\mathbf{H}_{\mathbf{2}} \mathrm{PO}_{\mathbf{4}}}$

Now, here's a few of these to try on your own....

Try these ones...

1. Find the conjugate acid of each of the following. $\mathrm{C}_{4} \mathrm{f}_{4} \mathrm{COO}$
a) $\mathrm{CH}_{3} \mathrm{COO}^{-}$
conjugate acid is \qquad $\mathrm{CH}_{3} \mathrm{COOH}$ or $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$
b) $\mathrm{SO}_{4}{ }^{2-}$
conjugate acid is \qquad HSO_{4}
c) $\mathrm{H}_{2} \mathrm{O}$ conjugate acid is \qquad
d) O^{2-} conjugate acid is \qquad
e) OH^{-} conjugate acid is \qquad
f) $\mathrm{HPO}_{4}{ }^{2-}$ conjugate acid is \qquad
g) $\mathrm{H}_{2} \mathrm{PO}_{4}^{-} \quad$ conjugate acid is \qquad $\mathrm{H}_{3} \mathrm{PO}_{4}$
h) NH_{3} conjugate acid is \qquad $\mathrm{NH}_{4}+$

Try these ones...
2. Find the conjugate base of each of the following.
a) HNO_{3}
conjugate base is \qquad NO_{3}^{-}
b) $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$
conjugate base is \qquad $\mathrm{HC}_{2} \mathrm{O}_{4}{ }^{-}$
c) $\mathrm{H}_{2} \mathrm{SO}_{3}$
conjugate base is \qquad
d) HNO_{2}
conjugate base is \qquad
e) HClO_{3}
conjugate base is \qquad
f) $\mathrm{H}_{2} \mathrm{O}$
conjugate base is \qquad
g) OH^{-}
conjugate base is \qquad
h) $\mathrm{NH}_{4}{ }^{+}$
conjugate base is \qquad NH_{3}

Acid \& Base Reactions:

Neutralization Reactions:

- A DOUBLE DISPLACEMENT reaction of an ACID and a BASE to produce a SALT and WATER.
- Acids and bases are OPPOSITES. Acids contain $\underline{\mathrm{H}+\text { ions, bases }}$ contain $\underline{\text { OH- ions, and when they are in EQUAL PROPORTION, they }}$ combine to form $\underline{H}_{2} \underline{\mathbf{O}}$ (NEUTRAL).
- Therefore, if: $\underline{\mathrm{mol}}_{\text {acid }}=\mathrm{mol}_{\text {base }}$, we get $\mathrm{pH}=\mathbf{7}$ (NEUTRAL).
- The resulting solution still CONDUCTS ELECTRICITY.

$$
\text { Example: } \underset{\text { Base }}{\mathrm{NaOH}_{(\mathrm{aq})}}+\underset{(\mathrm{aq})}{\mathrm{HCl}_{(2)}} \rightarrow \underset{\mathrm{NaCl}_{(\mathrm{aq})}}{ }+\underset{\mathrm{H}_{2} \mathrm{O}_{(l)}}{ } \text { Acidt Water }
$$

Acid \& Base Reactions:

These reactions will occur in a series of steps :

Step 1: $\mathrm{NaOH}_{(a q)}+\mathrm{HCl}_{(a q)} \rightarrow \mathrm{Na}^{+}{ }_{(a q)}+\mathrm{Cl}_{(a q)}+\mathrm{H}^{+}{ }_{(a q)}+\mathrm{OH}^{-}(a q)$

Step 2: $\mathrm{H}^{+}{ }_{(a q)}+\mathrm{OH}_{(\text {aq) }}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}_{(1)}$

Net: $\quad \mathrm{NaOH}_{(a q)}+\mathrm{HCl}_{(a q)} \rightarrow \mathrm{Na}_{(a q)}^{+}+\mathrm{Cl}_{(a q)}+\mathrm{H}_{2} \mathrm{O}_{(l)}$

Reactions of Acids With Water:

In Science 20F, we learned that acids produce $\underline{\mathbf{H}^{+}}$ions in WATER, but this is not ENTIRELY true...

- An acid DOES produce $\underline{\mathbf{H}}^{+}$ions in water, but they do not float around on their OWN.
- Since $\underline{\mathbf{H}^{+}}$is simply a PROTON, it has a very STRONG POSITIVE CHARGE, and will attract to anything remotely NEGATIVE.
- WATER is a POLAR molecule, with a PARTIAL NEGATIVE charge on the oxygen.

Reactions of Acids With Water:

Since acids will release $\mathrm{H}+$ ions in water...

- The H^{+}will attract to the open electron pairs on the oxygen, creating $\underline{H}_{3} \underline{\mathbf{O}^{+}}$, called a HYDRONIUM ION.
ie.)

Therefore,
All acid solutions contain hydronium (H3O+) ions. It is the hydronium ion which gives all acids their properties (like sour taste, indicator colours, reactivity with metals etc.)

$$
\mathrm{H}_{3} \mathrm{O}^{+}=\mathrm{H}^{+}(a \mathrm{y})
$$

Reactions of Acids With Water:

Recall that earlier in the course, when HCl gas dissolved in water, we wrote:

$$
\mathrm{HCl}_{(g)} \rightarrow \mathrm{H}_{(a q)}^{+}+\mathrm{Cl}_{(q q)}^{-}
$$

Now, we will write the following:

$$
\mathrm{HCl}_{(g)}+\mathrm{H}_{2} \mathrm{O}_{(l)} \rightarrow{\mathrm{H} 3 O^{+}}_{(a q)}+\mathrm{Cl}_{(a q)}^{-}
$$

The proton $(\mathrm{H}+$) has been TRANSFERRED from the HCl molecule to a WATER molecule, to form a HYDRONIUM ($\underline{\mathbf{H 3 O}+\text {) ion and a Cl- ion. }}$

This type of reaction is called IONIZATION (because ions are being formed)

Reactions of Bases With Water:

- Bases will produce $\mathbf{O H}^{-}$ions in water.
- They can do this by either DISSOCIATING, or "ACCEPTING" a PROTON from a WATER molecule.

Ex) $\quad \mathrm{NaOH}+\mathrm{H}_{2} \sigma \rightarrow \mathrm{Na}^{+}{ }_{(a q)}+\mathrm{OH}^{-}{ }_{(a q)}$

