Speed \& Velocity

Outcomes:

S2-3-01 Analyze the relationship between displacement, time, and velocity for an object in uniform motion.

Introduction...

Recall that speed and velocity are how FAR something travels in a certain time INTERVAL.

Time Interval:

We measure a time INTERVAL the same as we do for a DISTANCE interval...we calculate the CHANGE in time.

$$
\Delta t=t_{2}-t_{1}
$$

- Remember that time is a SCALAR quantity (no DIRECTION)!

Unit Conversions:

- We will need to calculate distance and time in a variety of UNITS. To convert units, we must multiply or divide by a CONVERSION FACTOR:
- Distance:
- $1 \mathrm{~km}=1000 \mathrm{~m}$
- $1 \mathrm{~m}=100 \mathrm{~cm}$
- Time:
- $1 \mathrm{hr}=60 \mathrm{~min}$
- $1 \mathrm{~min}=60 \mathrm{~s}$

Unit Conversions... $\frac{1 \mathrm{Km}}{1000 \mathrm{~m}}$ on $\frac{100 \mathrm{~m}}{1 \mathrm{~km}}$
Examples:
How many meters in:
a. 5 km
b. 1.2 km
c. 0.76 km

$$
5 \mathrm{~km} \times \frac{1000 \mathrm{~m}}{1 \mathrm{~km}}=5000 \mathrm{~m}
$$

$$
1.2 \mathrm{~km} \times \frac{1000 \mathrm{~m}}{1 \mathrm{~km}}
$$

$$
0.76 \mathrm{Km} \times \frac{1000 \mathrm{~m}}{1 \mathrm{~km}}
$$

$$
=1200 \mathrm{~m}=760 \mathrm{~m}
$$

How many kilometers in;
a. 200 m
b. 2300 m
c. 1045 m

$$
200 \mathrm{~m} \times \frac{1 \mathrm{~km}}{1000 \mathrm{~m}}=0.2 \mathrm{~km}
$$

$$
\begin{aligned}
& 2300 \mathrm{~m} \times \frac{1 \mathrm{~km}}{1000 \mathrm{~m}} \quad=1.045 \mathrm{~km} \\
& =2.3 \mathrm{~km}
\end{aligned}
$$

Unit Conversions... $\frac{1 \mathrm{hr}}{60 \mathrm{~m} . \mathrm{n}} \frac{60 \mathrm{~min}}{1 \mathrm{hr}}$
Examples:
How many minutes in:
a. 1.5 hrs
b. 2 hr 35 min
c. 0.45 hr

$$
\begin{aligned}
& 2 \mathrm{hr} \times \frac{60 \mathrm{~min}}{1 \mathrm{mr}}= 120 \mathrm{~min} \\
&+35 \mathrm{~min} \\
& 155 \mathrm{~min}
\end{aligned}
$$

$$
0.45 \mathrm{hr} \times \frac{60 \mathrm{~min}}{1 \mathrm{hr}}
$$

$$
=27 \mathrm{~min}
$$

How many seconds in each of the above?

$$
90 \mathrm{~min} \times \frac{60 \mathrm{~s}}{1 \mathrm{~min}}=5400 \mathrm{~s}\left\{15 \mathrm{~mm} \times \frac{60 \mathrm{~s}}{1 \mathrm{m.r}}=9300 \mathrm{~s}\left\{\begin{array}{r}
27 \mathrm{~min} \times \frac{605}{1 \mathrm{~mm}} \\
=1620 \mathrm{~s}
\end{array}\right.\right.
$$

How many hours in:
a. 30 min
b. 45 min
c. 240 s

$$
\begin{aligned}
& 240 \mathrm{~s} \times \frac{\mathrm{lmin}}{60 \mathrm{~s}}=4 \mathrm{~m} \cdot \mathrm{n} \\
& 4 \mathrm{~m} \cdot \mathrm{n} \times \frac{1 \mathrm{hr}}{60 \mathrm{~mm}}=0.07 \mathrm{hr}
\end{aligned}
$$

Speed \& Velocity...

Recall that speed is scalar and velocity is a vector.

Speed (v):

- Is defined as how far something travels in a certain amount of time:

$$
v_{\text {average }}=\frac{\Delta d}{\Delta t}
$$

Where:

$$
\begin{aligned}
& v=\text { average speed in }(\mathrm{m} / \mathrm{s}) \\
& \Delta d=\text { Change in distance }(\mathrm{m}) \\
& \Delta t=\text { Change in time }(\mathrm{s})
\end{aligned}
$$

The SI units for speed are $\underline{\mathrm{m} / \mathrm{s}}$ but we can also use $\underline{\mathrm{km} / \mathrm{hr}}$.

Speed Example...
Example:
You drove to Steinbach $(64 \mathrm{~km})$ from Winnipeg in 50 min . What was your average speed in $\mathrm{km} / \mathrm{hr}$ and m / s ?

$$
\rightarrow 50 \mathrm{~min} \times \frac{1 \mathrm{hr}}{60 \mathrm{~m}}
$$

$$
\begin{aligned}
& V=\frac{\Delta d}{\Delta t} \\
& V=\frac{64 \mathrm{~km}}{0.83 \mathrm{hr}} \\
& V=77.1 \mathrm{~km} / \mathrm{hr} \xrightarrow{23.6} \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

$$
=0.83 \mathrm{hr}
$$

* To Convert From $\mathrm{Km} / \mathrm{hr}$ to m / s, divide by 3.6 to go from m / s to $\mathrm{km} / \mathrm{hr} \times 3.6$

Speed \& Velocity...

Velocity (v):

- Is the same as SPEED, but has a DIRECTION associated with it. The formula would look like this:

Where:

$$
v_{\text {average }}=\frac{\Delta d}{\Delta t}
$$

$$
\begin{aligned}
& v=\text { average speed in }(\mathrm{m} / \mathrm{s}) \\
& \Delta d=\text { Change in distance }(\mathrm{m}) \\
& \Delta t=\text { Change in time }(\mathrm{s})
\end{aligned}
$$

In our example, your average velocity to Steinbach would be:

$$
\begin{aligned}
& 77.1 \mathrm{~km} / \mathrm{hr}[E] \quad \text { on } \\
&+77 \mathrm{k} / \mathrm{hr}
\end{aligned}
$$

Speed \& Velocity...
Examples:

1. Which is going faster?

- Car A moves 10 m in 4 s
- Car B moves 15 m in 5 s
car A

$$
\begin{aligned}
V & =\frac{\Delta d}{\Delta t} \\
& =\frac{10 \mathrm{~m}}{4 \mathrm{~S}} \\
V & =2.5 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

CAR B:

$$
\begin{aligned}
V & =\frac{\Delta d}{\Delta t} \\
& =\frac{15 \mathrm{~m}}{5 \mathrm{~s}} \\
V & =3 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

2. Trevor leaves his house to go to school at 8:00am. If the school is 1500 m away and he arrives at 8:20, find his speed in $\mathrm{km} / \mathrm{hr}$ and m / s

$$
V=\frac{\Delta d}{\Delta t}=\frac{1500 \mathrm{~m}}{1200 \mathrm{~s}}=1.25 \mathrm{~m} / \mathrm{s} \times 3.6=4.5 \mathrm{~km} / \mathrm{hr}
$$

Speed \& Velocity...
Try this one...
Usain bolt is the world's fastest man. He holds the current world record in the 100 m dash at 9.58s. Below is the data from a previous world record run at the summer Olympics in Beijing:
a) Determine Usain's average speed in m / s and $\mathrm{km} / \mathrm{hr}$.

$$
\begin{aligned}
V & =\frac{\Delta d}{\Delta t} \\
& =\frac{100 \mathrm{~m}}{9.69 \mathrm{~s}} \\
V & =10.42 \mathrm{~m} / \mathrm{s} \times 3.6=37.5 \frac{\mathrm{~km}}{\mathrm{hr}}
\end{aligned}
$$

Segment	Time (s)	Speed ($\mathbf{m s}^{-1}$)	Speed (mph)
$0-10$	1.85	5.41	12.09
$10-20$	2.87	9.80	21.93
$20-30$	3.78	10.99	24.58
$30-40$	4.65	11.49	25.71
$40-50$	5.50	11.76	26.32
$50-60$	6.32	12.20	27.28
$60-70$	7.14	12.20	27.28
$70-80$	7.96	12.20	27.28
$80-90$	8.79	12.05	26.95
$90-100$	9.69	11.11	24.85

b) What is the difference between average speed and instantaneous speed

Aug speed is ouen the whole race, inst. is at a specific time
c) How does his speed change during his race? (ie. Explain what's happening) increases, then decreases

