Solubility of Different Substances

http://iwastesomuchtime.com/43473

Outcomes:

- Describe the structure of water in terms of electronegativity and the polarity of its chemical bonds.
- Explain the solution process of simple ionic & covalent compounds.
- Perform a lab to illustrate formation of solutions in terms of polar & non polar

Ionic vs.Covalent:

Remember...

1. Ionic Compounds:

- Any substance formed by an <u>IONIC</u> bond, usually made of a <u>METAL</u> & a <u>NON-METAL</u>.
- When <u>DISSOLVED</u> in solution, they <u>DISSOCIATE</u>
 - → release **POSITIVE** & **NEGATIVE IONS**

Ex) <u>NaCl_(s) \rightarrow Na⁺_(aq) + Cl⁻_(aq)</u>

Solution is an <u>ELECTROLYTE</u> → <u>CONDUCTS</u> <u>ELECTRICITY</u>.

2. Covalent Compounds:

- When dissolved, **DOES** NOT **DISSOCIATE** into ions.
 - \rightarrow <u>PARTICLES</u> are simply <u>SURROUNDED</u> by <u>SOLVENT</u> <u>PARTICLES</u> (solvated)

Ex) $\underline{C_6H_{12}O_6(s)} \rightarrow \underline{C_6H_{12}O_6(aq)}$

• Are **NON-ELECTROLYTES**

Note the difference between the terms **DISSOLVE** and **DISSOCIATE**!

Polar Molecules:

Now that we know about electronegativity, we can identify a third type of compound \rightarrow <u>POLAR</u>!

Polar Molecules:

- Are not ionic or covalent, but are somewhere in **BETWEEN**
- Molecules that are bonded by an **<u>UNEVEN</u> SHARING** of electrons.
 - Some atoms have a stronger "<u>PULL</u>" on <u>ELECTRONS</u>, called <u>ELECTRONEGATIVITY</u>.
 - In water, the <u>SHARED ELECTRONS</u> are pulled <u>CLOSER</u> to the <u>OXYGEN</u> atom, making it <u>SLIGHTLY</u> more <u>NEGATIVE</u> (and hydrogen more positive)
 - This separation of charge is called a **<u>DIPOLE</u>**, and the result is water being a **<u>POLAR SOLVENT</u>**.

Non-Polar Molecules:

Non-Polar Substances:

- A molecule with atoms that have **<u>SIMILAR</u> ELECTRONEGATIVITIES**.
- Does <u>NOT</u> have specifically <u>CHARGED</u> <u>POLES</u>, are purely covalent.
 Ex) oil, carbon tetrachloride.

Dissolving process with polar and non-polar:

Dissolving Polar & Non-Polar

Solubility Rules:

Solvent-Solute Combinations

Solute	Solvent	What Happens	Result
Polar	Polar	The two polar solvent and solute are attracted to each other	Will dissolve
Non- polar	Non- Polar	Since both are non-polar, there are no attractions to break	Will dissolve
Polar	Non- Polar	The polar solute molecules are attracted to each other more than the non-polar solvent	Will not dissolve
Non- Polar	Polar	The polar solvent molecules are attracted to each other more than the non-polar solute	Will not dissolve

If we look at the above trend, we can say that generally:

"LIKE DISSOLVES LIKE"