Solubility and Precipitation

utcomes:

1-01 Explain observed examples of solubility and precipitation at the molecular and symbolic levels.1-02 Use a table of solubility rules to predict the formation of a precipitate.

Solubility

Is the ability and the extent that a substance will dissolve...

- Some compounds are highly **SOLUBLE**, others are **INSOLUBLE**.
- The solubility of **DIFFERENT** COMPOUNDS is determined EXPERIMENTALLY

 \rightarrow <u>Solubility Table</u>

Precipitation

When two solutions are mixed together, a <u>PRECIPITATE</u> may be formed when ions <u>JOIN</u> together to make an <u>INSOLUBLE</u> compound.

Precipitation Reactions

Ex) Reaction of silver nitrate and sodium chloride produces a white precipitate:

```
AgNO_{3(aq)} + NaCl_{(aq)} \rightarrow AgCl_{(aq)} + NaNO_{3(??)}
```

One of the compounds formed may be **INSOLUBLE**, but which one? (See solubility chart)

•NO₃⁻ is completely **<u>SOLUBLE</u>** with all **<u>CATIONS</u>** and

Na⁺ is completely <u>SOLUBLE</u> with all <u>ANIONS</u>

 \rightarrow Therefore, NaNO₃ <u>CANNOT</u> be the <u>PPT</u> since they are completely <u>SOLUBLE</u> with each other.

The **<u>PPT</u>** must be from the <u>**Ag**</u>⁺ and <u>**Cl**</u>⁻ ions. If we look at the table, we see that they form an insoluble compound.

 \rightarrow Therefore <u>AgCl</u> is the ppt., and the Na⁺ and NO₃⁻ ions remain in solution as <u>SPECTATOR</u> <u>IONS</u>.

Precipitation Reactions

Using the example above, we can write a variety of reaction equations to explain what is happening at the molecular level...

Agin + NO3(ag) + Notat + Clan -> AgCl(s) + (No3eg) (

Total Ionic: (All ionic compounds are **DISSOCIATED**)

<u>Net Ionic</u>: (what's left if we cancel the ions that exist on both sides)

Precipitation Reactions (Example 2)

Write the molecular, ionic and net-ionic equations for the reaction between $Pb(NO_3)_{2(aq)}$ and KI **Molecular Equation:** (normal equation)

Pb(NO3)2(an) + 2KI(an) -> PbI2(5) + 2KNO3 (an)

Total Ionic: (All ionic compounds are **DISSOCIATED**)

$$\left(Pb_{(ag)}^{2+} + 2103_{(ag)}\right) + \left(2k_{(ag)}^{+} + 2I_{(ag)}^{-}\right) - PbI_{2}(5) + \left(2k_{(ag)}^{+} + 2403_{(ag)}\right)$$

<u>Net Ionic</u>: (what's left if we cancel the ions that exist on both sides)

Here is this reaction seen at the molecular level...

Precipitation Reactions

Try this one...

Write the complete set of equations (molecular, ionic and net-ionic) showing the reaction between silver nitrate and sodium phosphate.

$$3 \operatorname{Ay} \operatorname{NO}_{3(aq)} + \operatorname{Nu}_{3} \operatorname{PO}_{4(aq)} \longrightarrow 3 \operatorname{Nu}_{3(aq)} + \operatorname{Ay}_{3} \operatorname{PO}_{4(s)}$$

$$\overline{3} \operatorname{Ay}_{(aq)}^{+} + \overline{3} \operatorname{Ay}_{3}^{+} \overline{3} + \overline{3} + \overline{3} \operatorname{Ay}_{3}^{+} \overline{3$$