Measuring Reaction Rates

Measuring the loss of mass as a gas forms

Collecting and measuring a gas product

https://nkschemistry.wikispaces.com/Methods+of+measuring+rates+of+reaction

Outcomes:

- Formulate an operational definition of reaction rate.
- Identify variables used to monitor reaction rate.
- Perform a lab to measure average and instantaneous rates.

Measuring Reaction Rates:

Recall:

- The reaction rate is how QUICKLY a REACTANT is CONSUMED, or a PRODUCT is FORMED.

There are a number of VARIABLES we can use to DETERMINE the RATE of a reaction, depending on the TYPE of SUBSTANCES or REACTION:

1. Reactions that produce gas:

- As GAS is PRODUCED, PRESSURE and VOLUME in the system will INCREASE.
- The FASTER the reaction, the more QUICKLY the CHANGE in VOLUME or PRESSURE will OCCUR.

$$
\text { Ex. } \mathrm{Zn}_{(s)}+\mathrm{HCl}_{(a q)} \rightarrow \mathrm{ZnCl}_{(a q)}+\mathrm{H}_{2(g)}
$$

\rightarrow Could use a pressure sensor, measure change in volume, or mass.

Measuring Reaction Rates:

2. Reactions involving ions:

- When IONS are PRODUCED, the CONDUCTIVITY of a solution INCREASES.
- The more QUICKLY the CONDUCTIVITY changes, the FASTER the REACTION.

$$
\begin{gathered}
\cdot\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCl}_{(a q)}+\mathrm{H}_{2} \mathrm{O}_{(I)} \rightarrow\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COH}_{(a q)}+\mathrm{H}_{(a q)}^{+}+\mathrm{Cl}_{(a q)} \\
\rightarrow \text { Use a conductivity tester. }
\end{gathered}
$$

3. Reactions that change colour:

- We can measure the INTENSITY of a COLOUR using a SPECTROPHOTOMETER.
- As a COLOUR is produced, its INTENSITY (STRENGTH) will INCREASE.
- Ex. $\mathrm{ClO}_{(a q)}^{-}+{I^{-}}_{(a q)} \rightarrow \mathrm{IO}_{(a q)}^{-}+\mathrm{Cl}^{-}(a q)$
- The YELLOW colour of the $\underline{\mathbf{I O}}$ becomes more and more INTENSE as the reaction PROCEEDS.

Measuring Reaction Rates:

4. Reactions involving acids/bases:

- How quickly pH changes, will also indicate the SPEED of a reaction.
- For NEUTRALIZATION reactions, how quickly the $\mathbf{p H}$ returns to $\underline{\mathbf{Z}}$ the FASTER the reaction.

As you can see, there are many factors that will indicate the rate of a reaction.

So, generally, rate is a change in some VARIABLE $\underline{\mathbf{X}}$ over time \mathbf{I} :

$$
\text { AverageRate }=\frac{\Delta x}{\Delta t}
$$

Calculating Average Rates:

We usually use the CHANGES in CONCENTRATION of PRODUCTS or REACTANTS over TIME to determine RATE.

Recall: Concentration $=\mathrm{mol} /$ volume $=\mathrm{mol} / \mathrm{L}$ or M

$$
a=\frac{\Delta V}{\Delta k}=\frac{\frac{m}{s}}{s}=\frac{m}{s} \times \frac{1}{s}
$$

1

$$
=\frac{m}{s^{2}}
$$

So we now have:

$$
\text { AverageRate }=\frac{\Delta c}{\Delta t}=\frac{\frac{m o l}{L}}{\frac{s}{L}}=\frac{m_{0} l}{L} \times \frac{l}{s}=\frac{m_{0} l}{L \cdot s}
$$

where rate is measured in $\frac{m o}{L \cdot}$

$$
x^{-2}=\frac{1}{x^{2}}
$$

$$
\frac{\mathrm{mol}}{\mathrm{~L} \cdot \mathrm{~s}} \text {, or } \overparen{\mathrm{mol} \cdot \mathrm{~L}^{-1 \cdot \mathrm{~s}^{-1}}}
$$

Calculating Average Rates:

Therefore...

$$
\text { AverageRate }=\frac{\Delta c}{\Delta t}=\frac{\left[x_{2}\right]-\left[x_{1}\right]}{t_{2}-t_{1}}
$$

where
$x_{1}=$ the initial concentration
$x_{2}=$ the "final" concentration
$\Delta t=$ the time elapsed

Rates \& Graphs:

The AVERAGE rate of a reaction is simply the SLOPE of a CONCENTRATION vs. TIME GRAPH.

Note:

Rates \& Graphs:

Instantaneous Rate

- Is the rate at a SPECIFIC TIME.
- This is determined by calculating the SLOPE of the LINE TANGENT to the POINT on the CONCENTRATION vs. TIME CURVE.

Calculating Average Rate:

Example 1:

Given the reaction $A \rightarrow B$, the following data was obtained:

x	
Time (\mathbf{s})	Concentration of $\mathbf{B}(\mathbf{m o l} / \mathrm{L})$
0.0	0.0
10.0	0.30
20.0	0.50
30.0	0.60
40.0	0.65
50.0	0.67

a) What is the average rate over the entire 50 seconds?

$$
\begin{aligned}
& t \text { is the average rate over the entire } 50 \text { seconds? } \\
& R_{\text {ATE }}=\frac{\Delta c}{\Delta t}=\frac{0.67 \frac{\mathrm{~mol}}{\mathrm{c}}-0 \frac{\mathrm{~mol}}{\mathrm{c}}}{50 \mathrm{~s}-0 \mathrm{~s}}=\frac{0.67 \frac{\mathrm{~mol}}{\mathrm{c}}}{50 \mathrm{~s}}=0.013 \frac{\mathrm{~mol}}{\mathrm{~L} \cdot \mathrm{~s}} \\
& t \text { is the average rate for the interval } 20 \mathrm{~s} \text { to } 40 \mathrm{~s} ?
\end{aligned}
$$

b) What is the average rate for the interval 20 s to 40 s ?

$$
=\frac{0.65 \frac{\mathrm{ml}}{\mathrm{c}}-0.5 \frac{\mathrm{~ms}}{\mathrm{c}}}{40 \mathrm{~s}-20 \mathrm{~s}}=0.0075 \frac{\mathrm{~mol}}{\mathrm{c}} \mathrm{~s}
$$

Try this one:

The decomposition of nitrogen dioxide produces nitrogen monoxide and oxygen according to the reaction:

$$
2 \mathrm{NO}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
$$

Given the following data determine the rates below:

Time $\mathbf{(s)}$	$\left[\mathrm{NO}_{\mathbf{2}}\right](\mathrm{mol} / \mathrm{L})$	$[\mathbf{N O}](\mathrm{mol} / \mathrm{L})$	$\left[\mathrm{O}_{\mathbf{2}}\right](\mathrm{mol} / \mathrm{L})$
0	0.120	0.00	0.00
75	0.076	0.044	0.022
150	0.059	0.061	0.031
225	0.047	0.073	0.036
300	0.036	0.084	0.042

a) The average rate of decomposition of NO_{2} over 300s.

$$
R_{\text {ste }}=\frac{\Delta\left[\mathrm{NO}_{2}\right]}{\Delta t}=\frac{0.036 \frac{\mathrm{~mol}}{\mathrm{c}}-0.120 \frac{\mathrm{~mol}}{\mathrm{~L}}}{300 \mathrm{~s}-0 \mathrm{~s}}=+2.8 \times 10^{-4} \frac{\mathrm{~mol}}{\mathrm{~L} . \mathrm{s}}
$$

b) The average rate of production of NO over 300 s .

$$
\text { Rate }=\frac{\Delta[\mathrm{NO}]}{\Delta t}=\frac{0.084 \frac{\mathrm{~mol}}{\mathrm{c}}-0}{300 \mathrm{~s}}=2.8 \times 10^{-4} \frac{\mathrm{~mol}}{\mathrm{L.5}}
$$

c) The average rate of production of O_{2} over 300 s .

$$
\begin{aligned}
& \text { age rate of production of } \mathrm{O}_{2} \text { over } 300 \mathrm{~s} . \\
& R_{\text {ate }}=\frac{\Delta\left(0_{2}\right\}}{\Delta t}=\frac{0.04 \frac{\mathrm{mt}}{\mathrm{~L}}}{300 \mathrm{~s}}=0.00014 \frac{\mathrm{mo}}{\mathrm{~L} .5} \quad\left(1.4 \times 10^{-4}\right)
\end{aligned}
$$

