Measuring Reaction Rates

https://nkschemistry.wikispaces.com/Methods+of+measuring+rates+of+reaction

Outcomes:

- Formulate an operational definition of reaction rate.
- Identify variables used to monitor reaction rate.
- Perform a lab to measure average and instantaneous rates.

Measuring Reaction Rates:

Recall:

The reaction rate is how <u>QUICKLY</u> a <u>REACTANT</u> is <u>CONSUMED</u>, or a <u>PRODUCT</u> is <u>FORMED</u>.

There are a number of <u>VARIABLES</u> we can use to <u>DETERMINE</u> the <u>RATE</u> of a reaction, depending on the <u>TYPE</u> of <u>SUBSTANCES</u> or <u>REACTION</u>:

1. Reactions that produce gas:

- As GAS is PRODUCED, PRESSURE and VOLUME in the system will INCREASE.
- The <u>FASTER</u> the reaction, the more <u>QUICKLY</u> the <u>CHANGE</u> in <u>VOLUME</u> or <u>PRESSURE</u> will <u>OCCUR</u>.

Ex. $Zn_{(s)} + HCl_{(aq)} \rightarrow ZnCl_{(aq)} + H_{2(g)}$

 \rightarrow Could use a pressure sensor, measure change in volume, or mass.

Measuring Reaction Rates:

- 2. Reactions involving ions:
 - When <u>IONS</u> are <u>PRODUCED</u>, the <u>CONDUCTIVITY</u> of a solution <u>INCREASES</u>.
 - The more <u>QUICKLY</u> the <u>CONDUCTIVITY</u> changes, the <u>FASTER</u> the <u>REACTION</u>.

•
$$(CH_3)_3CCI_{(aq)} + H_2O_{(I)} \rightarrow (CH_3)_3COH_{(aq)} + H^+_{(aq)} + CI^-_{(aq)}$$

 \rightarrow Use a conductivity tester.

- 3. Reactions that change colour:
 - We can measure the INTENSITY of a COLOUR using a SPECTROPHOTOMETER.
 - As a <u>COLOUR</u> is produced, its <u>INTENSITY</u> (STRENGTH) will <u>INCREASE</u>.
 - Ex. $CIO_{(aq)}^{-} + I_{(aq)}^{-} \rightarrow IO_{(aq)}^{-} + CI_{(aq)}^{-}$
 - The <u>YELLOW</u> colour of the <u>IO</u>⁻ becomes more and more <u>INTENSE</u> as the reaction <u>PROCEEDS</u>.

Measuring Reaction Rates:

- 4. *Reactions involving acids/bases:*
 - How quickly <u>pH</u> changes, will also indicate the <u>SPEED</u> of a reaction.
 - For **NEUTRALIZATION** reactions, how quickly the **pH** returns to **7**, the **FASTER** the reaction.

As you can see, there are many factors that will indicate the rate of a reaction.

So, generally, rate is a change in some **VARIABLE X** over time <u>T</u>:

$$AverageRate = \frac{\Delta x}{\Delta t}$$

Calculating Average Rates:

We usually use the CHANGES in CONCENTRATION of PRODUCTS or REACTANTS over TIME to $Q = \frac{NV}{DE} = \frac{\frac{M}{5}}{\frac{5}{1}} = \frac{M}{5} \times \frac{1}{5}$ $= \frac{M}{5^{2}}$ determine **RATE**.

Recall: Concentration = mol/volume = mol/L or M

So we now have:

$$AverageRate = \frac{\Delta c}{\Delta t} = \frac{Mol}{L} = \frac{Mol}{L} < \frac{1}{5} = \frac{Mol}{L \cdot 5}$$

where rate is measured in $\frac{Mol}{L \cdot s}$, or $\frac{Mol}{L \cdot 1 \cdot 5^{-1}}$
 $\chi^{-2} = \frac{1}{\chi^{2}}$, $\chi^{-1} = \frac{1}{\chi}$

Calculating Average Rates:

Therefore...

$$AverageRate = \frac{\Delta c}{\Delta t} = \frac{[x_2] - [x_1]}{t_2 - t_1}$$

where:

 x_1 = the initial concentration x_2 = the "final" concentration Δt = the time elapsed

Rates & Graphs:

Note:

The **AVERAGE** rate of a reaction is simply the **SLOPE** of a **CONCENTRATION** vs. **TIME GRAPH**.

Rates & Graphs:

Instantaneous Rate

- Is the rate at a <u>SPECIFIC TIME</u>.
- This is determined by calculating the <u>SLOPE</u> of the <u>LINE TANGENT</u> to the <u>POINT</u> on the <u>CONCENTRATION</u> vs. <u>TIME CURVE</u>.

Calculating Average Rate:

Example 1:

Given the reaction $A \rightarrow B$, the following data was obtained:

\mathcal{I}

The decomposition of nitrogen dioxide produces nitrogen monoxide and oxygen according to the reaction:

 $2 NO_2(g) \rightarrow 2 NO(g) + O_2(g)$

Given the following data determine the rates below:

Time (s)	[NO ₂] (mol/L)	[NO] (mol/L)	[O ₂] (mol/L)
. 0	0.120	0.00	0.00
75	0.076	0.044	0.022
150	0.059	0.061	0.031
225	0.047	0.073	0.036
300	0.036	0.084	0.042

