Naming Compounds

Maple Leaf Spelling Bee Commercial

Vitamin names

Dangers:

- · Death by inhalation
- Corrodes metals
- Bloating & nausea
- Electrical short-circuit
- Tissue damage & burns
- Soil erosion
- Brake failure

Uses:

- · Animal research
- Abortion clinics
- Nuclear plants
- Chemical warfare
- Performance enhancers
 Pharmaceuticals
 - Torture
 - Cult rituals

Places:

- Cancerous tumors
- Cleaning solvents
- · Prisons & hospitals
- Acid rain
- Lakes & streams
- Industrial waste
- . Baby food & beer

Ban Dihydrogen Monoxide _®DHMO.org

Outcome:

Write formulas and names for polyatomic compounds using IUPAC nomenclature.

Elemental Molecules:

You are responsible for knowing the **DIATOMIC** molecules.

<u>DIATOMIC</u> Molecules contain <u>**2 ATOMS**</u> of the <u>**SAME**</u> <u>**ELEMENT**</u>, and are <u>**NEVER**</u> found as <u>**SINGLE**</u> <u>**ATOMS**</u>.

NOTE:

Some elements can also exist as **POLYATOMIC MOLECULES** like S_8 (Sulfur) and P_4 (Phosphorus)

Naming Compounds

We use a standard system of naming (<u>IUPAC</u> – International Union of Pure and Applied Chemistry) to name all chemical compounds.

There is a different way to name chemicals depending on whether they are ionic or covalent

Covalent Bonds	Ionic Bonds
 Two <u>NON-METALS</u> Is a <u>SHARING</u> of electrons Ex) <i>CCI₄</i>, <i>CO₂</i>, <i>NO₂</i> 	 A <u>METAL</u> and a <u>NON-METAL</u> Electrons are <u>TRANSFERRED</u> Ex) <i>NaCl, CaS, MgH</i>₂

Naming COVALENT Compounds

Writing COVALENT names from formulas:

• We use a **PREFIX** system of **NOMENCLATURE** to name covalent compounds to show the number of each kind of atom:

mono = 1	hexa = 6
di = 2	hepta = 7
<i>tri</i> = 3	octa = 8
tetra = 4	nona = 9
penta = 5	deca = 10

Rules:

- The 1st element is named in <u>FULL</u>, using <u>PREFIXES</u> only when there <u>MORE</u> than <u>1 ATOM</u> (mono is understood).
- The <u>SECOND</u> element is <u>SHORTENED</u> and given an "<u>IDE</u>" suffix, and the appropriate <u>PREFIX</u>.

Naming COVALENT Compounds

Writing COVALENT names from formulas:

Examples:

* NO3 Nitrate

Formulas of COVALENT compounds

To find the <u>FORMULA</u> of a <u>COVALENT</u> compound, simply write the <u>SYMBOL</u> and the <u>NUMBER</u> of each atom (<u>SUBSCRIPT</u>) in the order that they are in the name.

Examples:

Sulphur dioxide \rightarrow 50_2

Trinitrogen heptoxide \rightarrow $N_3 \circ_7$

Dihydrogen Monoxide →

Naming BINARY IONIC Compounds

Writing IONIC names from formulas:

When naming any ionic compound the name of the <u>CATION</u> (<u>POSITIVE</u> ion) is written first, followed by the name of the <u>ANION</u> (<u>NEGATIVE</u> ion).

→ See "COMMON ION" Side of the PERIODIC TABLE.

Rules:

- 1. Name the **CATION** by writing the **FULL NAME** of the **METALLIC** element.
- 2. Name the <u>ANION</u> by <u>ABBREVIATING</u> the full name of the <u>NON-METALLIC</u> element and adding the suffix "<u>IDE</u>".

→ NO PREFIXES!!!!! They are not needed!

Naming BINARY IONIC Compounds

Examples:

NaCl → Sodium Chloride

ZnBr₂ → Zinc bromide

 $Al_2O_3 \rightarrow Alumium oxide$

Al3+

Formulas of BINARY IONIC Compounds

- Write the chemical <u>SYMBOL</u> of each element present.
- Use your periodic table to obtain the <u>CHARGES</u> on each atom involved in the ionic bond.
- <u>COMBINE</u> the atoms so the <u>CHARGES NEUTRALIZE</u> and the resulting compound is <u>NEUTRAL</u>.
 (criss-cross method or lowest common multiple)

Examples:

Magnesium chloride:

- Mg and Cl
- Mg has a charge of 2+, Cl has a charge of 1-.
- When <u>TWO</u> Cl^- ions combine with <u>ONE</u> Mg^{2+} ion, the overall charge is <u>ZERO</u>, therefore $MgCl_2$ is a <u>NEUTRAL</u> compound.

Write formulas for the following binary ionic compounds

Lithium Phosphide

L: +

P3-

L:3P

Strontium Nitride

Scat

N 3-

Sr3 N2

Aluminum Oxide

A13+ 0

Al203

Lead (IV) Oxide
Pbet 02-

Plo204 2:4

7

Naming With Transition Metals

You may have noticed that some ions have **ROMAN NUMERALS** after their names. These indicate different **OXIDATION STATES**.

Some metals can form <u>TWO</u> or <u>MORE IONS</u> due to their <u>ELECTRON</u> arrangement (ex. iron \rightarrow Fe²⁺ or Fe³⁺)

Writing names from formulas:

We must be able to show which ion is present, so we use **ROMAN NUMERALS** in **BRACKETS**:

Ex)
$$Fe^{2+} \rightarrow Iron(II)$$

Transition Metal Examples:

Iron (11) Chlorich

Iron(11) oxide

Iron(III) oxide

Name the following ionic compounds with transition metals

PbCl₄
Lead (IV) 3hlorida

11PbCl₂
Lead (II) chlorida

Formulas of Compounds with Transition Metals:

This follows the same rules as **BINARY IONIC** compounds from the previous lesson. Be sure to use the **CORRECT CHARGE** in the **POSITIVE** ion.

Example:

Iron (II) chloride

- Fe has a charge of <u>2+</u> (as indicated by the Roman numeral, Cl has a charge of <u>1-</u>
- ONE Fe atom combined with <u>TWO</u> Cl atoms results in a <u>NEUTRAL</u> charge
- Therefore, the formula is FeCl₂

Write formulas for the following ionic compounds with transition metals

Cadmium (II) Oxide

C 1 2+

Cd 0

mercury(1) Hg

Manganese (III) sulphide

 $M_N^{3+} \leq^{2-}$

 $M_{n_2}S_3$

Mercury (II) Nitride

Hg N3

Hg3N2

Naming With Complex Ions

Complex ions are **GROUPS** of atoms made **STABLE** by **SHARING ELECTRONS**, which then become even more **STABLE** by **GAINING** or **LOSING ELECTRONS**.

Ex) Nitrate $\rightarrow NO_3^-$ Ammonium $\rightarrow NH_4^+$

Unlike **NEUTRAL** molecules, complex ions carry an **ELECTRIC CHARGE** and do not exist by themselves.

We follow the naming rules for <u>BINARY</u> <u>IONIC</u> compounds, but we treat the complex ion as a single ion.

Naming with Complex Ions

The **COMPLEX** part(s) of the ion are **NAMED** according to the "ion" side of the periodic table.

Note:

You may see the following names for complex ions:

- \rightarrow Bicarbonate = HCO_3^- (HYDROGEN CARBONATE)
- → Bisulfate = HSO₄ (HYDROGEN SULFATE)
- Ex) Baking soda is called sodium bicarbonate, but it can also be called sodium hydrogen carbonate.

Examples:

Sodium nitrate

Zinc chlorate lead (IV) sulphate

CH3(00H

CH3CH2 Olt

Write the names for the following ionic compounds that contain complex ions

(NH₄) CI

ammonium chloride

Na HCO₃

Sodium bicarbonate (hydrogen carbonate)

Magnesium acetate

CH3C00

CoH302-

Formulas of Complex Ions

When placing a <u>SUBSCRIPT</u> number after the <u>FORMULAS</u> for a complex ion, the <u>GROUP</u> is first <u>BRACKETED</u>.

Examples:

Barium sulphate

Aluminum hydroxide

Iron (III) sulphate

Write formulas for the following ionic compounds that contain complex ions

Copper (I) phosphate

Barium bromate

Magnesium Hydrogen Sulphate

Ionic compounds with different amounts of oxygen

The most common (NORMAL) form of the complex ions that contain oxygen end in "ATE". We add/change the PREFIX or a SUFFIX for the ANION (negative ion) to indicate how the NUMBER of OXYGEN atoms is different from the NORMAL amount.

Look at *Chlorate* on the back of the periodic table...

Notice the Pattern!

Ionic compounds with different amounts of oxygen

Rules:

- 1 more oxygen: use PREFIX "PER" on anion
- 1 less oxygen: use SUFFIX "ITE" instead of "ate" on anion
- 2 less oxygen: use prefix "HYPO" and suffix "ITE" on anion

per nitrate = NO4

nitrate = NO3

nitrite = NO2

hypo nitrite = NO

Examples:

Na NO₃

Sodium nitrate

Potassium hypophosphile

Lithium sulphite

Zinc perchlorate

Write formulas for the following ionic compounds with varied oxygen.

Sodium phosphite

Mr. PO2 3-

Na 3 PD 3

Lead (II) persulphate

Ph 505

Ph 505

Lithium silicate

1: Si03

Lin 5:03

 $Mg_3(PO_5)_2$

Magnesium perphosphale.

 $AI(NO_4)_3$

Aluminum pernitrate