Naming Compounds KHILS
 Dangers: Uses: Places:
 - Death by inhalation - Corrodes metals - Bloating \& nausea
 Electrical short-circuit
 - Tissue damage 8 burns
 - Soil erosion
 - Disaster \& destruction - Animal research - Abortion clinics - Nuclear plants
 - Chemical warfare
 - Performance enhancers
 - Torture
 - Fire suppression
 - Cancerous tumors - Cleaning solvents - Prisons \& hospitals - Acid rain
 - Pharmaceuticals
 Lakes \& streems
 - Lakes \& stream - Industrial waste
 Ban Dihydrogen Monoxide .DHMO.org

Maple Leaf Spelling Bee Commercial

Vitamin names

Outcome:

Write formulas and names for polyatomic compounds using IUPAC nomenclature.

Elemental Molecules:

You are responsible for knowing the DIATOMIC molecules.
DIATOMIC Molecules contain $\mathbf{2}$ ATOMS of the SAME ELEMENT, and are NEVER found as SINGLE ATOMS.

Hydrogen $\left(\mathrm{H}_{2}\right)$
Oxygen $\left(\mathrm{O}_{2}\right)$
Fluorine $\left(\mathrm{F}_{2}\right)$
Bromine $\left(\mathrm{Br}_{2}\right)$
Iodine $\left(\mathrm{I}_{2}\right)$
Nitrogen $\left(\mathrm{N}_{2}\right)$
Chlorine $\left(\mathrm{Cl}_{2}\right)$
Astatine $\left(\mathrm{At}_{2}\right)$.

NOTE:

Some elements can also exist as POLYATOMIC MOLECULES like S_{8} (Sulfur) and P_{4} (Phosphorus)

Naming Compounds

We use a standard system of naming (IUPAC - International Union of Pure and Applied Chemistry) to name all chemical compounds.

There is a different way to name chemicals depending on whether they are ionic or covalent

Covalent Bonds	lonic Bonds
- Two $\underline{\text { NON-METALS }}$	- A METAL and a NON-METAL
- Is a $\underline{\text { SHARING of electrons }}$	- Electrons are $\underline{\text { TRANSFERRED }}$
Ex) $\mathrm{CCl}_{4}, \mathrm{CO}_{2}, \mathrm{NO}_{2}$	Ex) $\mathrm{NaCl}, \mathrm{CaS}, \mathrm{MgH}_{2}$

Naming COVALENT Compounds

Writing COVALENT names from formulas:

- We use a PREFIX system of NOMENCLATURE to name covalent compounds to show the number of each kind of atom:

mono $=1$	hexa $=6$
di $=2$	hepta $=7$
tri $=3$	octa $=8$
tetra $=4$	nona $=9$
penta $=5$	deca $=10$

Rules:

- The $1^{\text {st }}$ element is named in FULL, using PREFIXES only when there MORE than $\underline{1 \text { ATOM (mono }}$ is understood).
- The SECOND element is SHORTENED and given an "IDE" suffix, and the appropriate PREFIX.

Naming COVALENT Compounds
Writing COVALENT names from formulas:

Examples:
$\mathrm{co} \rightarrow$ Carbon mon oxide
$\mathrm{CO}_{2} \rightarrow$ Carbon dioxich
$\mathrm{SF}_{6} \rightarrow$ Sulphur hexafluoride
$\mathrm{N}_{2} \mathrm{O}_{5} \rightarrow$ dinitrogen pentode
$\mathrm{NO}_{3} \rightarrow$ nitrogen trioxide

Formulas of COVALENT compounds

To find the FORMULA of a COVALENT compound, simply write the SYMBOL and the NUMBER of each atom (SUBSCRIPT) in the order that they are in the name.

Examples:

Sulphur dioxide \rightarrow

Trinitrogen heptoxide $\rightarrow \quad \mathrm{N}_{3} \mathrm{O}_{7}$
Dihydrogen Monoxide \rightarrow

Naming BINARY IONIC Compounds

Writing IONIC names from formulas:
When naming any ionic compound the name of the CATION (POSITIVE ion) is written first, followed by the name of the ANION (NEGATIVE ion).
\rightarrow See "COMMON ION" Side of the PERIODIC TABLE.

Rules:

1. Name the CATION by writing the FULL NAME of the METALLIC element.
2. Name the ANION by ABBREVIATING the full name of the NON-METALLIC element and adding the suffix "IDE".
\rightarrow NO PREFIXES!!!!! They are not needed!

Naming BINARY IONIC Compounds
Examples:
$\mathrm{NaCl} \rightarrow$ Sodium chloride
$\mathrm{ZnBr}_{2} \rightarrow$ Zinc bromiche
$\mathrm{Al}_{2} \mathrm{O}_{3} \rightarrow$ Aluminum ox ale

$$
)^{2-}
$$

Formulas of BINARY IONIC Compounds

- Write the chemical SYMBOL of each element present.
- Use your periodic table to obtain the CHARGES on each atom involved in the ionic bond.
- COMBINE the atoms so the CHARGES NEUTRALIZE and the resulting compound is NEUTRAL. (criss-cross method or lowest common multiple)

Examples:

Magnesium chloride:

- $\mathbf{M g}$ and $\mathbf{C l}$
- $\mathbf{M g}$ has a charge of $2+, \mathbf{C l}$ has a charge of $\mathbf{1 -}$
- When TWO $\mathbf{C l}^{-}$ions combine with $\underline{O N E} \mathbf{M g}^{\mathbf{2 +}}$ ion, the overall charge is ZERO, therefore MgCl_{2} is a NEUTRAL compound.

$$
\mathrm{MgCl}_{2}
$$

Try these ones...

Write formulas for the following binary ionic compounds
Lithium Phosphide

$$
L_{i}^{+} \quad P^{3-}
$$

$$
L: 3 P
$$

Strontium Nitride

$$
S r^{2+} N^{3-}
$$

$\operatorname{Sr}_{3} N_{2}$

Aluminum Oxide
Al^{3+} 0^{2-}
$\mathrm{Al}_{2} \mathrm{O}_{3}$

Naming With Transition Metals

You may have noticed that some ions have ROMAN NUMERALS after their names. These indicate different OXIDATION STATES.

Some metals can form TWO or MORE IONS due to their ELECTRON arrangement (ex. iron $\rightarrow \mathrm{Fe}^{2+}$ or Fe^{3+})

Writing names from formulas:
We must be able to show which ion is present, so we use ROMAN NUMERALS in BRACKETS:
Ex) $\mathrm{Fe}^{2+} \rightarrow$ Iron(11)

$$
\mathrm{Fe}^{3+} \rightarrow \quad \text { Iron (ili) }
$$

Transition Metal Examples:

Iron(II) Chlorich

FeZ
Iron(II) oxide

$$
\begin{aligned}
& \mathrm{Ce}_{2} \mathrm{O}_{3} \\
& 3+ \\
& 2_{2}+ \\
& \frac{3+}{6+} \frac{2}{6-}
\end{aligned}
$$

$\operatorname{Iron}(I I I)$ oxide

Try these ones...
Name the following ionic compounds with transition metals
PbCl_{4}
Lead (IV) chloride
PbCl_{2}
Lead (II) chloride
$\mathrm{Fe}_{2} \mathrm{O}_{3}$

Formulas of Compounds with Transition Metals:

This follows the same rules as BINARY IONIC compounds from the previous lesson. Be sure to use the CORRECT CHARGE in the POSITIVE ion.

Example:

Iron (II) chloride

- Fe has a charge of $\underline{\mathbf{2}+}$ (as indicated by the Roman numeral, Cl has a charge of $\underline{\mathbf{1 -}}$
- ONE Fe atom combined with TWO Cl atoms results in a NEUTRAL charge
- Therefore, the formula is FeCl_{2}

Try these ones...
Write formulas for the following ionic compounds with transition metals Cadmium (II) Oxide

$$
C d^{2+} O^{2-}
$$

Cd

Manganese (III) sulphide

$$
m_{n}^{3+} s^{2-}
$$

$\mathrm{Mn}_{2} \mathrm{~S}_{3}$

Mercury (II) Nitride

$$
\mathrm{Hg}_{3} \mathrm{~N}_{2}
$$

Naming With Complex Ions

Complex ions are GROUPS of atoms made STABLE by SHARING ELECTRONS, which then become even more STABLE by GAINING or LOSING ELECTRONS.

$$
\begin{array}{ll}
\text { Ex) } & \text { Nitrate } \rightarrow \mathrm{NO}_{3}^{-} \\
& \text {Ammonium } \rightarrow \mathrm{NH}_{4}^{+}
\end{array}
$$

Unlike NEUTRAL molecules, complex ions carry an ELECTRIC CHARGE and do not exist by themselves.

We follow the naming rules for BINARY IONIC compounds, but we treat the complex ion as a single ion.

Naming with Complex Ions

The COMPLEX parts) of the ion are NAMED according to the "ion" side of the periodic table.

Note:

You may see the following names for complex ions:
\rightarrow Bicarbonate $=\mathrm{HCO}_{3}^{-}$(HYDROGEN CARBONATE)
\rightarrow Bisulfate $=\mathrm{HSO}_{4}^{-}($HYDROGEN SULFATE $)$
Ex) Baking soda is called sodium bicarbonate, but it can also be called sodium hydrogen carbonate.

$$
\begin{aligned}
& \text { Sodium nitrate } \\
& \text { Zinc chlorate } \\
& \text { lead (IV) sulphate }
\end{aligned}
$$

Try these ones...

$$
\mathrm{CH}_{3} \mathrm{COOH}
$$

$$
\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}
$$

Write the names for the following ionic compounds that contain complex ions
$\left(\mathrm{NH}_{4}\right) \mathrm{Cl}$
$\left(\mathrm{Mg} \mathrm{HCO}_{3}\right.$
$\frac{\left.\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2}}{7}$
ammonium chloride
$\mathrm{Mg}\left(\mathrm{CCO}_{3} \mathrm{C}_{3} \mathrm{O}_{2}\right)_{2}$
Sodium bicarbonate (hydrogen carbonate)

Magnesium acetate

$\mathrm{CH}_{3} \mathrm{COO}^{-}$

$$
\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}
$$

Formulas of Complex Ions

When placing a SUBSCRIPT number after the FORMULAS for a complex ion, the GROUP is first BRACKETED.

Examples:

Barium sulphate

Aluminum hydroxide

$$
A((O H) 3
$$

Iron (III) sulphate

$$
\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}
$$

Try these ones...
Write formulas for the following ionic compounds that contain complex ions Copper (I) phosphate

$$
\mathrm{Cu}^{+} \mathrm{PO}_{4}^{3-}
$$

$$
\mathrm{Cu}_{3} \mathrm{PO}_{4}
$$

Barium bromate

$$
\mathrm{Ba}^{2+} \mathrm{BrO}_{3}^{-}
$$

$\mathrm{Ba}\left(\mathrm{BrO}_{3}\right)_{2}$

Magnesium Hydrogen Sulphate

$\mathrm{Mg}\left(\mathrm{HSO}_{4}\right)_{2}$

Ionic compounds with different amounts of oxygen

The most common (NORMAL) form of the complex ions that contain oxygen end in "ATE". We add/change the PREFIX or a SUFFIX for the ANION (negative ion) to indicate how the NUMBER of OXYGEN atoms is different from the NORMAL amount.

Look at Chlorate on the back of the periodic table...

Notice the Pattern!

Ionic compounds with different amounts of oxygen

Rules:
1 more oxygen: use PREFIX "PER" on anion
1 less oxygen: use SUFFIX "ITE" instead of "ate" on anion
2 less oxygen: use prefix "HYPO" and suffix "ITE" on anion
Examples:
$\mathrm{Na} \mathrm{NO}_{3}$
sodium nitrate
$\mathrm{K}_{3} \mathrm{PO}_{2}$
$\mathrm{Li}_{2} \mathrm{SO}_{3}$
Lithium sulphite
$\mathrm{Zn}\left(\mathrm{ClO}_{4}\right)_{2}$
potassium hypophosphite
zinc perchlorate

$$
\begin{aligned}
\text { per nitrate } & =\mathrm{NO}_{4}^{-} \\
\text {nitrate } & =\mathrm{NO}_{3}^{-} \\
\text {nitrite } & =\mathrm{NO}_{2}^{-} \\
\text {hypo nitrite } & =\mathrm{NO}^{-}
\end{aligned}
$$

Try these ones...
Write formulas for the following ionic compounds with varied oxygen.
Sodium phosphite
N

$$
\mathrm{Na}_{3} \mathrm{PO}_{3}
$$

Lead (II) persulphate

$$
P b^{2+} 505^{2-}
$$

$$
\mathrm{PbSO}_{5}
$$

Lithium silicate

$$
\mathrm{Li}^{+} \mathrm{SiO}_{3}^{2-} \quad \mathrm{L}_{2} \mathrm{SiO}_{3}
$$

$$
\mathrm{Mg}_{3}\left(\mathrm{PO}_{5}\right)_{2}
$$

Magnesium perphosphate
$\mathrm{Al}\left(\mathrm{NO}_{4}\right)_{3}$
Aluminum pernitrate

