History of Pressure

 "Are your ears popping?"

Outcomes:

- Example the historical development of the measurement of pressure. Include: Galileo, Toricelli, von Gureick, Pascal, Huygens, Avogadro, Dalton.
- Describe the various units used to measure pressure. Include: $a t m, k P a, m m H g, m b$

History of the Atmosphere

The study of pressure and its measurement dates back to the late 1500's. Here is a brief summary of the history of pressure measurement.

Galileo Galilei (1564-1642):

- Developed the first SUCTION PUMP.
- Used AIR to draw WATER up a column (like a SYRINGE).
- Found that there was a LIMIT to how high water could be raised (about 10 meters)
- Thought this was the limit of the "SUCTION" of the VACUUM created by the PUMP.

http://galileo.rice.edu/sci/instruments/pump.html

History of the Atmosphere

Evangelista Toricelli (1643):

- Studied under GALILEO
- Determined that the limit to the height that the pump could draw water was due to ATMOSPHERIC PRESSURE.
- Inverted a closed-end TUBE filled with MERCURY into a PAN of mercury at SEA LEVEL.
- The HEIGHT of the mercury in the tube (in $\mathbf{m m H G}$) is equal to the ATMOSPHERIC PRESSURE on the mercury in the PAN.
- This is the first BAROMETER.
- In doing so, he found that air has MASS (exerts PRESSURE).
- Also believed that the space in the top of the column was a VACUUM.

History of the Atmosphere

Otto von Guericke (1643-1645):

- Invented the AIR PUMP.
- Used the air pump to create a VACUUM in two METAL HEMISPHERES.
- The VACUUM was so strong that a team of 16 HORSES could not pull them apart.
- He reasoned that the HEMISPHERES were being held together by ATMOSPHERIC PRESSURE and NOT the VACUUM.

Note:
\rightarrow von Guericke was CORRECT, vacuums don't "SUCK" it is the ATMOSPHERE that PUSHES.

History of the Atmosphere

Blaise Pascal (1648):

- Used Toricelli's Barometer, and traveled up and down a MOUNTAIN.
- He found that the column of mercury would RISE as he moved DOWN the mountain, indicating that the ATMOSPHERIC PRESSURE was INCREASING.
- Later, the S.I. unit of pressure, the 'PASCAL' was named after him.

History of the Atmosphere

Christian Huygens (1661):

- Developed the MANOMETER to study the ELASTIC forces in gases.

John Dalton (1801):

- Stated that in a mixture of gases, the TOTAL PRESSURE is equal to the SUM of the PRESSURES of EACH GAS.
- The pressure exerted by each as is called it's PARTIAL PRESSURE.

https://legacy.etap.org/demo/chem5/instructiontutor_last.html

History of the Atmosphere

Joseph Louis Gay-Lussac (1808):

- Observed the law of COMBINING VOLUMES.
- "Gases react in simple volumetric proportions and the volumes of the reactants can be related to the volumes of the products in simple proportions."
- He noticed that $\mathbf{2}$ VOLUMES of hydrogen combine with ONE VOLUME of oxygen to make TWO VOLUMES of water.

History of the Atmosphere

Amadeo Avogadro (1811)

- Used some of Gay-Lussac's experiments to determine that the PRESSURE in a container is DIRECTLY PROPORTIONAL to the NUMBER of PARTICLES in the container.
- Ex. BALLOON, TIRES etc.

Units of Pressure

Pressure

- is the FORCE that a gas exerts on a certain AREA.
- The pressure exerted by the atmosphere is called ATMOSPHERIC PRESSURE.

There are many different units that we can use to measure pressure. Pressure is calculated in units of FORCE per unit AREA.
\rightarrow The SI unit of FORCE is the NEWTON ($\mathrm{kg} \cdot \mathrm{m} / \mathrm{s}^{\mathbf{2}}$).

Units of Pressure

Standard Pressure:

- Like any other unit we must have a STANDARD to use as a starting point.
- With pressure, we use the atmospheric pressure at SEA LEVEL.
- The unit ATMOSPHERE (atm) was derived from standard atmospheric pressure at sea level. 1 atm = standard pressure.

https://socratic.org/questions/why-is-atmospheric-pressure-measured-at-sea-level
http://peter-mulroy.squarespace.com/air-pressure/

Units of Pressure

Kilopascal (kPa)

- A force of 1 Newton per meter squared ($\mathrm{N} / \mathrm{m}^{2}$) is our SI unit of pressure, called the PASCAL (Pa).

```
\(\rightarrow 1000 \mathrm{~Pa}=\underline{1}\) KILOPASCAL (kPa).
\(\rightarrow 101.3 \mathrm{kPa}=\underline{1}\) ATM (standard pressure)
```


mmHg

- Using Torricelli's barometer, we can measure pressure in terms of the HEIGHT of the mercury COLUMN. This is another unit called MILLIMETERS OF MERCURY ($\mathbf{m m H g}$).
$\rightarrow 760 \mathrm{mmHg}=\underline{1 \mathrm{ATM}}=\underline{101.3 \mathrm{KPA}}$ (standard pressure)

Units of Pressure

Torr

- In honour of Torricelli, it was meant to be the same as $\mathbf{m m H g}$, but its definition has changed over the years.
- We will assume that $\mathbf{1}$ torr $=\mathbf{1 m m H g}$

Millibar (mb or mbar)

- The BAR is a meteorological unit of pressure. It may also be expressed as MILLIBARS (mb or mbar). $1000 \mathrm{mb}=1 \mathrm{bar}$
$\rightarrow 1$ bar $=\underline{1} \mathrm{ATM}=\underline{\mathbf{7 6 0} \mathrm{mmHg}=\underline{101.3} \mathrm{KPA} \text { (std pressure) }}$

Converting Units of Pressure

Example:
Convert 1.5atm to $\mathrm{kPa}, \mathrm{Pa}$, and mmHg

$$
\begin{aligned}
& 1.5 \mathrm{~atm} \times \frac{101.3 \mathrm{kPa}}{1 \mathrm{~atm}}=151.95 \mathrm{kPa} \times \frac{1000 \mathrm{~Pa}}{1 \mathrm{kPa}}=151950 \mathrm{~Pa} \\
& 1.5 \text { atm } \times \frac{760 \mathrm{mmHg}}{1 \mathrm{~atm}}=1140 \mathrm{mmHg}
\end{aligned}
$$

Measuring Pressure

Manometers \& Barometers:

Are both used to measure the PRESSURE of a gas.

1. Manometers

- Measure the pressure of a gas or vapour in a CLOSED CONTAINER by COMPARING it to that of the ATMOSPHERE.
- You have seen this in the first unit.

Closed end

(a) $P_{\text {gas }}=P_{h_{1}}$

(b) $P_{\text {gas }}+P_{h_{2}}=P_{\text {atm }}$

(c) $P_{\text {gas }}=P_{\text {atm }}+P_{h_{3}}$

Measuring Pressure

1. Barometers

- Measure the pressure of the ATMOSPHERE.
- There are two different types:
a) Mercury Barometers
- Use a COLUMN of mercury INVERTED in a open DISH of mercury (like TORICELLI'S).
- The HEIGHT of the mercury indicates the PRESSURE.
- Are hard to read, but are more accurate.

http://www.charlesedwin.com/mercury.htm

Measuring Pressure

a) Aneroid Barometers

- Use a partially EVACUATED metal DRUM that EXPANDS/CONTRACTS with varying pressure.
- Are inexpensive and easy to read, but are less accurate since it is MECHANICAL.

[^0]
Feeling Pressure

We FEEL pressure in various ways:

- Ear's popping on a plane.
- Difficulty breathing at higher altitudes.
- The "bends" in divers
- Pressure on the body when diving.

When diving, the changes in pressure are amplified due to the weight of the ATMOSPHERE, and the weight of the WATER.

Divers will feel more pressure in SALT water than in FRESH water. Why might this be?
\rightarrow The salt adds more weight to the water, and hence more pressure.
\rightarrow In salt water, it takes a depth of 33FT to equal 1 ATM.
\rightarrow In fresh water it takes a depth of 34FT to equal 1 ATM.

[^0]: http://www.acr.ac.th/acr/ACR_CAI/Tiwawan/FlipAlbumCD/Albums/Atmosphere_opf_files/

