Conjugate Acid \& Base Pairs...

Outcomes:

- Write acid/base chemical equations. Include conjugate pairs, amphoteric behaviour.

Conjugate Acid \& Base Pairs

The general form of a Bronsted-Lowry acid-base reaction is:

Acid + Base \longleftrightarrow Conjugate acid + Conjugate Base

- The CONJUGATE ACID is what remains after a BASE has ACCEPTED a λ PROTON, and the CONJUGATE BASE is what remains after the ACID has DONATED its PROTON.

Ex) Reaction of ammonia and water

The reverse reaction would be:

$$
\underset{A}{\mathrm{NH}_{4}^{+}+\underset{B}{O} \mathrm{O}^{-} \longleftrightarrow \mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \text { }}
$$

Conjugate Acid \& Base Pairs

- Notice that an ACID RESULTS when $\mathbf{N H}_{3}$ ACCEPTS a PROTON from WATER. However, the NH_{4}^{+}can DONATE a PROTON to the HYDROXIDE.
- In the FIRST REACTION, NH_{3} is the BASE, and $\mathrm{NH}_{4}{ }^{+}$is its CONJUGATE ACID. WATER is the ACID, and OH ${ }^{-}$is its CONJUGATE BASE.
- Therefore,
- NH_{3} and NH_{4}^{+}are a CONJUGATE ACID-BASE PAIR, as are $\mathrm{H}_{2} \mathrm{O}$ and OH^{-}.

So for this reaction:

Conjugate Acid \& Base Pairs

In general,
For some acid HA:

And for some base B :

Conjugate Pairs Example:

Given the reaction:

- The $\underline{\mathrm{HIO}}_{\mathbf{3}}$ must LOSE ONE PROTON $(\mathrm{H}+)$ to become $\underline{I O}_{\mathbf{3}}{ }^{-}$
- $\underline{\mathrm{HIO}}_{3}$ is acting as an ACID while $\underline{\mathrm{IO}}_{\underline{3}}^{-}$is acting as a BASE.
- $\underline{\mathrm{HIO}}_{\underline{3}}$ and $\underline{\mathrm{O}}_{\underline{3}}{ }^{-}$form what is called a CONJUGATE ACID-BASE PAIR.
- The only difference between these two is the $\underline{I O}_{3}^{-}$has ONE LESS " \mathbf{H} " and ONE MORE (-) CHARGE than the $\underline{\mathrm{HIO}}_{\mathbf{3}}$. All conjugate acid-base pairs are like this.
- The form with ONE MORE $\mathbf{H}^{+}\left(\mathrm{HIO}_{3}\right)$ is called the CONJUGATE ACID.
- The form with ONE LESS H $\left(\mathrm{IO}_{3}^{-}\right)$is called the CONJUGATE BASE.

Out of every acid-base reaction, you always get 2 CONJUGATE PAIRS. For example, in the above reaction the two conjugate pairs are:

$$
\mathrm{HIO}_{3} \frac{\text { Pair 1 }}{4 \mathrm{IO}_{3}^{-}} \quad \frac{\text { Pair 2 }}{\mathrm{NO}_{2}^{-}} \text {\& } \mathrm{HNO}_{2}
$$

NOTE: The " 1 " and the " 2 " in "conjugate pair 1 " etc. has no special meaning.

Try these ones:
Identify the conjugate acid-base pairs in each of the following reactions:

Pair 1: (acid) $\frac{\mathrm{CH}_{3} \mathrm{COOH}_{2}}{\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}}$ (base) $\frac{\mathrm{CH}_{3} \mathrm{COO}^{-}}{\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}}$
Pair 2: (acid) \qquad $\mathrm{NH}_{4}{ }^{+}$ (base) \qquad NH_{3}
b) $\overbrace{\mathrm{H}_{2} \mathrm{SO}_{3}+\mathrm{H}_{2} \mathrm{PO}_{4}^{-}}^{\mathrm{H}^{+}}$

Pair 1: (acid) \qquad $\mathrm{H}_{2} \mathrm{SO}_{3}$ (base) \qquad $\mathrm{HSO}_{3}{ }^{-}$
\qquad $\mathrm{H}_{3} \mathrm{PO}_{4}$ (base) \qquad HalO_{4}^{-}

Try these ones:
Identify the conjugate acid-base pairs in each of the following reactions:
c)

Pair 1: (acid) \qquad HNO_{2} (base) \qquad $\mathrm{NO}_{2}-$

Pair 2: (acid) \qquad $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ (base) \qquad $\mathrm{HC}_{2} \mathrm{O}_{7}^{-}$

d)

Pair 1: (acid) \qquad $\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}^{3+}$ e) $\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}(\mathrm{OH})^{2+}$

Pair 2: (acid) \qquad $\mathrm{H}_{2} \mathrm{CO}_{3}$ (base) \qquad HCO_{3}

