Power

S1-3-20 Define electrical power as energy per unit time, and solve related problems. Include: $P=E / t$.

James Watt (1736-1819):

Improved the efficiency of the STEAM ENGINE. He tried to describe the POWER of these engines by comparing them to HORSES.

They used HORSES to get COAL out of mines with a system of PULLEYS.

\rightarrow an average horse could lift about 1000 pounds 33 feet in one minute

Later, scientists defined power as ENERGY per UNIT TIME.

Power:

ELECTRICAL POWER describes the amount of ELECTRICAL ENERGY converted to LIGHT, HEAT, SOUND, MOTION, etc. every SECOND.

Power can also be the amount of energy transferred from one place to another every second.

$$
P=\frac{E}{t}
$$

Where,

- E = Energy in Joules (J)
- $\mathrm{t}=$ Time in seconds (s)
- P = Power in Watts (W)

In honour of James Watt, we call $1 \mathrm{~J} / \mathrm{s}$ a WATT (W) - the unit for Power.
NOTE: You must always convert time into seconds!!!!
1 min $=60$ seconds 1 hour $=3600$ seconds

Power:

You can also calculate Power if you know POTENTIAL DIFFERENCE (VOLTS) and CURRENT (AMPS)...

Why?

$$
100 w=(15 A)(+\infty)
$$

- Because the amount of electrical POWER in a circuit depends on how FAST the electrons are moving, and how much FORCE (VOLTAGE) they have.
- More PRESSURE \& FASTER SPEED = more POWER!

Power Eamples:

$$
P=\frac{E}{t} \quad \mathbf{P}=\boldsymbol{I} \times \boldsymbol{V}
$$

1. A Television is on for 1 hour, and uses 720000 J of energy. Find the power rating of the T.V.

$$
\begin{array}{ll}
t=1 \mathrm{hr}=3600 \mathrm{~s} & P=\frac{E}{t} \\
E=720,000 \mathrm{~J} & P=\frac{720000 \mathrm{~J}}{3600 \mathrm{~s}}=200 \mathrm{~W} \\
P=? ? &
\end{array}
$$

2.) You turn on a light for 60 s to find something. It has a power rating of 60 W . How much energy did it use?

$$
\begin{array}{ll}
t=60 \mathrm{~s} & P=\frac{E}{t} \\
P=60 \mathrm{~W} & E=P \cdot t \\
E=? & E=(60 \mathrm{~W})(605)=3600 \mathrm{~J}
\end{array}
$$

Power Eamples:

Examples:

$$
P \quad P=\frac{E}{I} \quad P=I \times V
$$

3. A c.d. player has a power rating of 85 W , and it used 5100 J of energy. How long was it on for?

A light bulb has a power rating of 100 W . If it is on a 120 V system, how much current must flow?

$$
\begin{aligned}
& P=100 \mathrm{~W} \\
& V=120 \mathrm{~V} \\
& I=?
\end{aligned}
$$

$$
P=I \cdot U
$$

$$
I=\frac{P}{V}
$$

$$
\begin{aligned}
& I=\frac{P}{V} \\
& I=\frac{100 \mathrm{~W}}{120 \mathrm{~V}}=0.83 \mathrm{~A}
\end{aligned}
$$

Power Eamples:

Examples:

$$
P=\frac{E}{t} \quad P=I \times V
$$

5. A kettle draws 5 amps of current and is rated for 550 watts. What is the minimum voltage needed?
