Limiting Reagents

Outcome:

- Identify the limiting reactant and calculate the mass of a product, given the ratio of products to reactants.
- Perform a lab involving stoichiometry, identifying the limiting reactant, and calculating the mole ratio.

Limiting Reagents (reactants)

A LIMITING REACTANT (REAGENT) is a reactant that LIMITS the FINAL YIELD of PRODUCTS because it is USED UP before the other reactant(s).
\rightarrow It is the reactant that is USED UP FIRST.

The reactants

The products

Excess Reactants

https://phet.colorado.edu/en/simulation/reactants-products-and-leftovers

Most chemical reactions proceed UNTIL the LIMITING REACTANT is CONSUMED. Once consumed, the reaction will STOP. All other reactants are said to be in EXCESS.

Limiting Reagents (reactants)

Example:

It takes $2 \underline{\text { SLICES }}$ of BREAD and $1 \underline{\text { KRAFT SINGLE to make a GRILLED CHEESE sandwich. }}$

https://phet.colorado.edu/en/simulation/reactants-products-and-leftovers

If you have 8 SINGLES and 10 SLICES of BREAD, how many SANDWICHES can be made?

Limiting Reagents (reactants)

https://phet.colorado.edu/en/simulation/reactants-products-and-leftovers
Which reactant is limiting?
\rightarrow The BREAD!!! (enough CHEESE for $\underline{8}$ sandwiches, but only BREAD for $\underline{5}$)

How much excess reactant is there?
\rightarrow You will be left with $\underline{\underline{3}}$ slices of CHEESE

Limiting Reagents (reactants)

Steps to solving limiting reactant problems:

1. Write the BALANCED EQUATION.
2. Change the QUANTITIES of REACTANTS to MOLES.
3. DETERMINE which reactant is LIMITING, using the MOLAR RATIO of the REACTANTS.
4. Use the MOLES of LIMITING REAGENT to DETERMINE the MOLES of PRODUCT required.
5. CONVERT MOLES of product to the REQUIRED UNITS.

Limiting Reagents (reactants)
Examples:

1. Ammonia gas combines with HCl to produce ammonium chloride. If 1.00 g of ammonia is mixed with 1.00 g HCl . Calculate the mass of $\mathrm{NH}_{4} \mathrm{Cl}$ produced.

$$
\begin{aligned}
& \mathrm{NH}_{3}+\mathrm{HCl} \longrightarrow \mathrm{NH}_{4} \mathrm{Cl} \\
& \text { NEED }
\end{aligned}
$$

$$
\begin{aligned}
& 0.03 \mathrm{molHCl} \times \frac{1 \mathrm{~mol} \mathrm{NIH}_{4} \mathrm{Cl}}{1 \mathrm{molHCl}}=0.03 \mathrm{~mol} \mathrm{NH} \mathrm{HCl}^{2} \times \frac{53.54 \mathrm{~g}}{1 \mathrm{~mol}}=1.6 \mathrm{~g} \mathrm{NH} 4 \mathrm{Cl}
\end{aligned}
$$

Limiting Reagents (reactants)
Examples:
2. Calcium metal burns in oxygen gas to give calcium oxide. Calculate the mass of calcium oxide that will be formed when0.48gof calcium is burned in ex $3250 x y$ gen.

$$
\begin{aligned}
& 2 \mathrm{Ca}+\mathrm{O}_{2} \rightarrow 2 \mathrm{CaO} \\
& \text { Need }
\end{aligned}
$$

Limiting Reagents (reactants)
Try these ones...

1. Sodium metal reacts violently with chlorine gas to produce sodium chloride. What mass of NaCl would result from the reaction of odium with 0.426 g of chlorine?

$$
2 \mathrm{Na}^{2}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{NaCl} \text { excess }
$$

0.702 g

Limiting Reagents (reactants)
Try these ones...
2. If 40.0 g of $\mathrm{H}_{3} \mathrm{PO}_{4}$ reacts with 6 water. Calculate the volume of CO_{2} produced.

$$
\begin{aligned}
& 2 \mathrm{H}_{3} \mathrm{PO}_{4}+3 \mathrm{MgCO}_{3} \rightarrow \mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2}+3 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Hand } \\
& 0.41 \mathrm{molH}_{3} \mathrm{PO}_{4} \times \frac{3 \mathrm{molCO}_{2}}{2 \mathrm{molH}_{3} \mathrm{HO}_{4}}=0.615 \mathrm{molCO} 2 \times \frac{22.4 \mathrm{~L}}{1 \mathrm{~mol}}=13.8 \mathrm{LCO} \mathrm{CO}_{2}
\end{aligned}
$$

