Sex-Linked Traits

Normal Vision

Colourlblind

S1-1-14 Explain the inheritance of sex-linked traits in humans and use a pedigree to track the inheritance of a single trait. Examples: colour blindness, hemophilia

Genes \& Alleles...

Genes

- Genes are a PIECE of CHROMOSOME that contains the actual CODE for a certain TRAIT.
- There must be a gene for HAIR COLOUR, LEFT-HANDEDNESS and so on.
- Every CHARACTERISTIC we have must have a corresponding GENE in our chromosomes.

Homologous chromosomes

Genes \& Alleles...

Alleles

- An allele is a FORM of the GENE. For example in the homologous chromosomes shown in the diagram there is a GENE for HAIR COLOUR.
- Alleles for hair colour can be DARK(므) or LIGHT(́), where DARK hair colour is the DOMINANT allele.

Genes \& Alleles...

- After MEIOSIS has taken place, only one of the HOMOLOGOUS CHROMOSOMES will give genetic information from this parent to the offspring.
- This means the parent in the example can contribute either a DARK hair DOMINANT allele or LIGHT hair RECESSIVE allele to the offspring.
- Whether the offspring will have light or dark hair will depend on the ALLELES contributed by BOTH PARENTS.

Sex-Linked Traits...

Sex-linked traits are traits carried on SEX CHROMOSOMES (X AND Y).

The male determining chromosome $(\underline{\mathbf{Y}})$ has no corresponding $\underline{\text { ALLELES }}$ on the $\underline{\mathbf{X}}$ chromosome to MASK ITS EFFECTS.

The presence of the Y chromosome causes "MALENESS". The female determining chromosome $(\underline{\mathbf{X}})$ does not carry MALE GENES of the Y chromosome

Sex-Linked Traits...

A male has XY homologous chromosomes for sex determination

11	12
-6	
最	
8	

16

17

The male has one X and one Y sex chromosome. Since \underline{Y} genes can't be masked by genes on the X CHROMOSOME, he is male.

Sex-Linked Traits...

A female has XX homologous chromosomes for sex determination

The female has two $\underline{\mathbf{X}}$ sex chromosomes. Since there are no male, Y-BASED GENES, she is female.

Sex-Linked Traits...

The X and Y chromosomes also carry genes that code for traits other than gender. Traits determined by genes on the $\underline{\mathbf{X}}$ CHROMOSOME are called SEX-LINKED.

Some of these sex-linked traits show up as DISORDERS like HEMOPHILIA and COLOUR BLINDNESS.
\rightarrow the genes for these disorders are RECESSIVE and found only on the X-CHROMOSOME.

Ex) Colour blindness is recessive to normal vision. This is disorder mostly found in men. Why?

Males and Sex-Linked Traits...

Males receive X chromosomes from their mothers only.

Sex-linked traits are always on the X CHROMOSOME and a male only has one

If he receives an X chromosome with a SEX-LINKED allele on it, he will always DEMONSTRATE that trait because there is no corresponding ALLELE on the $\underline{\mathbf{Y}}$ chromosome to MASK IT.

Females and Sex-Linked Traits...

Females receive X chromosomes from both parents and therefore can inherit sex linked traits from either parent.

If a female is to show a sex-linked trait, she must have one DOMINANT ALLELE on an \underline{X} chromosome or two RECESSIVE ALLELES on both \underline{X} chromosomes.

If a female receives ONE RECESSIVE sex-linked allele from her mother or father she WILL NOT show the trait, but she is a CARRIER and there is a probability that she will pass the sexlinked trait TO ONE-HALF OF HER SONS.

Punnett Squares \& Sex-Linked Traits...

Example:

A woman who is heterozygous for colour-blindness (a carrier) has children with a man with normal vision. What genotypes and phenotypes will result?

The heterozygous mother who does not exhibit colour-blindness has a $\mathbf{5 0 \%}$ chance of producing a COLOUR-BLIND son and ZERO chance of producing a COLOUR-BLIND daughter.

The HOMOZYGOUS DAUGHTER will not have any COLOUR-BLIND offspring if she has children with a NORMAL VISION male. The HETEROZYGOUS DAUGHTER will produce offspring with the SAME RESULTS as the mother.

Punnett Squares \& Sex-Linked Traits...

Example 2:

What kind of offspring result from a colour-blind father and heterozygous normal mother?

The colour-blind father has

- A 25\% chance of producing a COLOUR BLIND DAUGHTER
- A $\mathbf{2 5 \%}$ chance of producing a COLOUR-BLIND SON.

If the colour-blind daughter now married a colour-blind male, the offspring would have 100% COLOUR-BLINDNESS

Punnett Squares \& Sex-Linked Traits...

The probability of having a homozygous colour-blind female and a colour-blind male producing offspring is not common in the general population.

If however, there were significant inbreeding, that is if relatives with a sex linked disease intermarried, then a problem can develop.

An example genetic diseases and sex linking can be seen in European aristocracy. Royalty knew no national boundaries in Europe. Intermarriage among nations was so common that a Russian Prince could have a genetic background that was mostly British. A sex-linked gene for hemophilia was introduced through marriage. Through intermarriage the female carrier would infect the males to such an extent that it became a problem.

