Reaction Time \& Braking Distance

REACTION TIME
That annoying time between your brain yelling at you to duck and you actually listening to it.

S2-3-11 Investigate the factors that influence braking distance. Include: reaction time, friction, condition of driver, speed, etc.

Reaction Time and Reaction Distances...

REACTION TIME

- is the amount of time it takes for you to RECOGNIZE a situation and REACT to it.

REACTION DISTANCE

- is the DISTANCE the car travels WHILE you are REACTING to a hazard (that is identifying the hazard, analyzing the situation, making a decision and moving your foot over to the brake pedal).
- Is increased if:
- you take LONGER TO REACT and apply the brakes.
- the SPEED of your car is greater.

Factors Affecting Reaction Time ...

1. VEHICLE RESPONSE TIME

- tire TREAD and tire PRESSURE
- vehicle WEIGHT
- SUSPENSION system of the car

2. HUMAN PERCEPTION TIME

- How long it takes to see a hazard and REALIZE there is a hazard
- Can vary from 0.5 s TO 3-4 s

3. HUMAN REACTION TIME

- time it takes to move your FOOT from the GAS pedal to the BRAKE pedal

What are some things that will affect your perception and reaction time?

Braking Distance and Stopping Distance ...

Braking Distance:

- The DISTANCE you cover while BRAKING.

Stopping Distance:

- The TOTAL distance a car travels from the moment a HAZARD IS NOTICED until the car comes to a COMPLETE STOP.
- Stopping distance CONSISTS of REACTION distance and BRAKING distance.

Stopping Distance $=$ Reaction Distance + Braking Distance
To sum it up:

Calculating Stopping Distance ...

1. REACTION DISTANCE

- The distance that a car travels BEFORE the BRAKES are applied.
- Equal to the VELOCITY multiplied by the REACTION TIME (vehicle response time, human perception time, human reaction time)

$$
d=(v)(t) \quad V=\frac{\Delta d}{\Delta t}
$$

2. BRAKING DISTANCE

- Braking distance depends upon two factors:

- VELOCITY OF CAR

- FRICTION between the road and tires
- The mathematical relationship between velocity and braking distance is

$$
d^{\alpha} \boldsymbol{v}^{2}
$$

- braking distance is PROPORTIONAL to the square of the VELOCITY

That is, if you DOUBLE your speed, the braking distance increases FOUR times and if your speed TRIPLES, your braking distance increases NINE times.

Calculating Stopping Distance ...

Braking distance also depends on the friction.

Physicists account for the frictional effects by using a mathematical constant $\mathbf{(k)}$ for different kinds of surfaces. In this way, the proportion can be represented by an equation such as:

$$
d=k v^{2}
$$

- Surfaces with a LOT OF FRICTION have a LOW value for k, and SLIPPERY surfaces have a HIGH value of k.

Approximate values for the constant k can be found in the table. The values are given for velocities in m / s.

Rubber tire on	Frictional Constant (k) in $\mathbf{~ m / s}$
Dry Pavement	0.15
Wet concrete	0.1
Snow and Ice	0.6

Calculating Stopping Distance ...
Examples:

1. Find the braking distance for a car with a velocity of $50 \mathrm{~km} / \mathrm{h}$ on dry pavement.

$$
\begin{aligned}
& d=K v^{2} \\
& d=(0.15)(13.8 \mathrm{~m} / \mathrm{s})^{2} \\
& d=28.56 \mathrm{~m}
\end{aligned}
$$

at $100 \mathrm{~km} / \mathrm{hr} \div 3.6=27.8 \mathrm{~m} / \mathrm{s}$

$$
\begin{aligned}
& d=k v^{2} \\
& d=(0.13)(27.8)^{2} \\
& d=115.92 \mathrm{~m}
\end{aligned}
$$

Calculating Stopping Distance ...
Examples:
2. Suppose you are riding in a car $19.4 \mathrm{~m} / \mathrm{s}$ on wet pavement. You spot a hazard and your reaction time is 1.15 s . Calculate your stopping distance.

$$
\text { Stopping distance }=\text { reaction dist }+ \text { braking dist }
$$

Calculating Stopping Distance ...

Try this one...

You are driving down a dry highway at $100 \mathrm{~km} / \mathrm{h}$. You see a deer in the road ahead. You have a reaction time of 2.1s. Find your stopping distance.

